

Technical Report on the Frisco Property Sections 9, 15 and 16 Township 21N, Range 20W GSRM Union Pass 7.5 minute Quadrangle Latitude 35.210072 N Longitude 114.415801 W Mohave County, Arizona

Prepared for Frisco Gold Corporation

Effective Date: December 31, 2019

1790 East River Road, Suite 213 Tucson, Arizona 85718 Phone: 520-744-4457 Email: info@geografxworld.com

Barbara Carroll, C.P.G.

Contents

1	EXE	CUTIVE SUMMARY	12
	1.1	Introduction	12
	1.2	Project Description and Location	12
	1.3	Accessibility, Climate, Local Resources, Infrastructure and Physiography	13
	1.4	History	14
	1.5	Geology and Mineralization	15
	1.6	Exploration, Drilling, Sampling, Analysis, and Data Verification	16
	1.7	Metallurgical Testing	17
	1.8	Data Modelling and Resources	
	1.8.1	Gold Dome Resource	
	1.8.2	Granite Resource	21
	1.8.3	Resource Summary	24
	1.9	Conclusions and Recommendations	24
2	INT	RODUCTION	26
	1.1	Qualifications of Qualified Persons	26
	1.2	Details of Inspection	27
	1.3	Sources of Information	27
	1.4	Frequently Used Acronyms, Abbreviations, Definitions, and Units of Measure	27
3	RELI	IANCE ON OTHER EXPERTS	29
4	PRO	PERTY DESCRIPTION AND LOCATION	
	4.1	Location	
	4.2	Land Area, Agreements and Encumbrances	
	4.2.	1 Patented Ground	
	4.2.	2 Arizona State Land Permit	
	4.3	Frisco Land & Mining Company Agreement	
	4.4	Water and Surface Rights	
	4.5	Environmental	
	4.5.	1 Environmental Liabilities	
	4.5.	2 Permitting	
5	Acce	ess, Climate, Local Resources, Infrastructure and Physiography	

	5.1	Access	38
	5.2	Local Resources and Infrastructure	38
	5.3	Climate	38
	5.4	Physiography3	39
6	Histo	ory4	10
	6.1	Previous Mining History4	10
	6.2	Frisco Recent History4	10
	6.2.1	1972 Red Dog Mining4	11
	6.2.2	2 1980 Red Dog Mining4	11
	6.2.3	3 1982 - 1986 Frisco Land and Mining Co4	11
	6.2.4	1986 Western States Minerals4	11
	6.2.5	5 1987 – 1988 Gerle Gold4	12
	6.2.6	5 1989 Ivernia West PLC/Mohave Mining4	13
	6.3	Surface Sampling and Trenching4	14
	6.3.1	1987 Gerle Gold/Mahogany Minerals Resources4	14
	6.3.2	2 1988 Gerle Gold/Mahogany Minerals Resources4	14
	6.4	Maps and Drawings5	52
	6.4.1	1987 Gerle Gold/Mahogany Minerals Resources5	52
	6.4.2	2 1988 Gerle Gold/Mahogany Minerals Resources5	54
	6.4.3	3 1989 Mohave Mining Inc5	54
	6.5	Surveys	54
	6.5.1	1987 Gerle Gold/Mahogany Minerals Resources5	54
	6.5.2	2 1988 Gerle Gold/Mahogany Minerals Resources5	55
	6.6	Drilling5	56
	6.6.1	1972 Red Dog Mining5	57
	6.6.2	2 1973-1975 Red Dog Mining5	57
	6.6.3	3 1980 Red Dog Mining5	57
	6.6.4	1982 Red Dog Mining5	58
	6.6.5	5 1982-1985 Frisco Land and Mining Company5	58
	6.6.6	5 1987 Gerle Gold/Mahogany Minerals JV (pre-August 31)5	59
	6.6.7	7 1987 Gerle Gold Drilling (August 31 to December 31)5	59

	6.	6.8	1988 Gerle Drilling (Jan 1 to March 31 1988)	.60
	6.	6.9	1989 Mohave Mining Inc	. 60
	6.7	Histo	pric Mineral Resource Estimates	.61
	6.	7.1	1987 Gerle Gold Granite Zone Resource	.61
	6.	7.2	1988 Gerle Gold - Gold Dome Resource	. 63
	6.	7.3	1989 Mohave Mining Inc. – Gold Dome Ore Reserves	. 65
	6.8	Met	allurgical Sampling	.66
	6.	8.1	1987 Gerle Gold Granite Zone – McClelland Labs	. 66
	6.	8.2	1988 Gerle Gold Granite Zone – Hawthorn	.67
	6.	8.3	1989 – Mohave Mining Inc. – Hazen Research	. 68
	6.9	Mini	ng and Engineering	. 68
7	G	EOLOGI	C SETTING AND MINERALIZATION	. 70
	7.1	Regi	onal Geology	. 70
	7.	1.1	Geology	. 70
	7.	1.2	Mineralization	. 70
	7.	1.3	Past Development	. 70
	7.2	Distr	ict Geology	.73
	7.	2.1	Geology	.73
	7.	2.2	Mineralization	.73
	7.3	Loca	I Property Geology and Mineralization	.76
	7.	3.1	Geology	.76
	7.	3.2	Structure	.77
	7.	3.3	Alteration and Mineralization	. 79
	7.4	Prop	erty Deposits and Exploration Targets	. 79
	7.	4.1	Gold Dome	. 79
	7.	4.2	Gold Crown	. 81
	7.	4.3	Section 16	.83
8	DI	EPOSIT	TYPES	. 85
9	E۷	(PLORA	TION	.86
10	1	DRILLI	VG	. 88
	10.1	Pre	1987 Drilling	. 89

	10.1	l.1	1972 Red Dog Mining	89
	10.1	L.2	1973-1975 Red Dog Mining	90
	10.1	L.3	1980 Red Dog Mining	91
	10.1	L.4	1982 Red Dog Mining	91
	10.1	L.5	1982-1985 Frisco Land & Mining Company	91
1	0.2	Gerl	le Gold/Mahogany Minerals JV	92
	10.2	2.1	1987 Gerle Gold/Mahogany Minerals JV (pre-August 31)	93
	10.2	2.2	1987 Gerle Gold Drilling (August 31 to December 31)	94
	10.2	2.3	1988 Gerle Gold/Mahogany Minerals JV	96
1	0.3	Moł	nave Mining Inc	97
	10.3	3.1	: Gold Dome	98
	10.3	3.2	Granite Extension	98
1	0.4	Drill	Hole Location Maps and sections	98
11	S	AMPL	E PREPARATION, ANALYSES AND SECURITY	110
1	1.1	SAN	IPLE PREPARATION	110
	11.1	L.1	Surface Sampling	110
	11.1	L.2	Historic Drilling	110
	11.1	L.3	Metallurgical Sample	111
1	1.2	Sam	ple Security	111
1	1.3	Sam	ple Analyses	111
	11.3	3.1	Surface Sampling	111
	11.3	3.2	Historic Drilling	112
	11.3	3.3	Metallurgical Samples	114
1	1.4	Sum	imary Statement	114
12	D	ΑΤΑ	VERIFICATION	115
1	2.1	Data	abase	115
	12.1	L.1	Hole names	115
	12.1	L.2	Hole locations	116
1	2.2	Drill	Collar Field Check	116
1	2.3	Sam	ple Integrity	117
1	2.4	Che	ck Analysis	117

	12	.4.1		1980 Drilling	
	12	.4.2	-	Mohave Minerals/Ivernia West PLC	
1	2.5	D	Discu	ission of the QA/QC Program and Results	
1	2.6	Ir	ndep	pendent Verification of Mineralization	
1	2.7	S	umr	mary Statement	
13		MIN	NER/	AL PROCESSING AND METALLURGICAL TESTING	
1	3.1	С	Conc	lusions	
1	3.2	R	leco	mmendations	
14		MIN	NER/	AL RESOURCE ESTIMATE	125
1	4.1	Ir	ntro	duction	
1	4.2	D	Data	base Used	
1	4.3	D)ens	ity Assignment	
1	4.4	С	lass	ification of Mineral Resources	
1	4.5	G	old	Dome Deposit	130
	14	.5.1		Sampling Intervals, Composites	130
	14	.5.2		Grade Distribution	131
	14	.5.3	5	Capping of Assays	132
	14	.5.4	Ļ	Lithology	134
	14	.5.5		Geological Interpretation and Modeling	134
	14	.5.6	5	Spatial Analysis	136
	14	.5.7	,	Block Model Geometry	
	14	.5.8	5	Grade Interpolation	140
	14	.5.9)	Gold Dome Resource	141
	14	.5.1	.0	Cut-Off Grade	144
	14	.5.1	.1	Grade Tonnage	145
	14	.5.1	.2	Resource Classification	146
1	4.6	G	Gran	ite Deposit	147
	14	.6.1		Sampling Intervals, Composites	148
	14	.6.2	2	Grade Distribution	148
	14	.6.3	5	Capping of Assays	150
	14	.6.4	Ļ	Lithology	

	14.6	5.5	Geological Interpretation and Modeling	153
	14.6	5.6	Spatial Analysis	155
	14.6	5.7	Block Model Geometry	157
	14.6	5.8	Grade Interpolation	159
	14.6	5.9	Granite Resource	160
	14.6	5.10	Cut-Off Grade	163
	14.6	5.11	Grade Tonnage	163
	14.6	5.12	Classification of Mineral Resources	164
1	4.7	Reso	ource Summary:	167
1	4.8	Com	ments on Resource Modeling	167
15.	N	1INER	AL RESERVE ESTIMATE	169
16	N	11NIN(G METHODS	170
17	R	ECOV	ERY METHODS	172
1	7.1	Over	rview of Heap Leach Technology	172
18	P	ROJEC	CT INFRASTRUCTURE	174
1	8.1	Acce	ess and Regional Transportation	174
1	8.2	Site	Transportation	174
1	8.3	Othe	er Project Infrastructure	174
19	N	1ARKE	ET STUDIES AND CONTRACTS	175
20	EI	NVIRC	ONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT	176
2	0.1	Envi	ronmental Studies	176
2	0.2	Rem	ediation	176
2	0.3	Pern	nitting Activities at the Frisco Property	176
	12.7	7.1	Air Quality Permit	177
	12.7	7.2	Aquifer Protection Permit	177
	12.7	7.3	Stormwater Discharge Authorization	177
	12.7	7.4	Mined Land Reclamation Plan	178
2	0.4	Socia	al or Community Impact	178
	20.4	l.1	Mine Safety & Health Administration	178
21	C,	ΑΡΙΤΑ	AL AND OPERATING COSTS	179
2	1.1	Capi	tal Costs	179

21.2	0	Dperating Costs	.81
22	ECC	DNOMIC ANALYSIS1	.82
22.1	R	lesults1	.83
22.2	т	ax Rates1	.83
23	ADJ	ACENT PROPERTIES 1	.85
23.1	0	Datman District	.85
23.2	S	ecret Pass1	.85
23.3	A	rabian Mine1	.85
23.4	T	yro Mine1	.86
23.5	К	atherine Mine1	.86
23.6	i N	Aoss Mine1	.86
23.7	' G	Sold Road1	.87
24	OTH	IER RELEVANT DATA1	.88
25	INTI	ERPRETATION & CONCLUSIONS1	.89
25.1	G	Geology1	.89
25.2	D	Prilling and Surveying1	.90
25.3	S	ampling Method and Approach1	.90
25.4	S	ample Preparation, Analyses, and Security1	.90
25.5	D	Database1	.90
25.6	R	esource Model1	.91
2	5.6.1	Gold Dome1	.91
2	5.6.2	Granite1	.91
25.7	'R	esource Estimate1	.92
2!	5.7.1	Gold Dome1	.92
2!	5.7.2	Granite1	.92
25.8	s ∿	Aetallurgy1	.92
25.9	E	xploration1	.92
26	REC	COMMENDATIONS	.93
26.1	. P	'hase 11	.93
20	5.1.1	Metallurgical work	.93
20	5.1.2	Engineering work1	.94

26	5.1.3	Environmental and permitting work	194
26.2	Bud	get1	195
27	Refere	nces1	196

Figures

Figure 4-1 Frisco Project Location Map	32
Figure 4-2 Frisco Patented Claims Record of Survey	33
Figure 4-3 State Section 16	35
Figure 5-1 View looking north towards the project area from the Right of Way	39
Figure 6-1 Frisco Sample Index Map	45
Figure 6-2 Section 16 Sample Index Map	
Figure 6-3 Sample Plan: Gold Crown Area, Assays Au oz/t	47
Figure 6-4 Sample Plan: Gold Dome Pit, Assays Au oz/t	48
Figure 6-5 Sample Plan: Granodiorite Pit, Assays Au oz/t	49
Figure 6-6 Sample Plan: Granite Extension and Bandera Area, Assays Au oz/t	50
Figure 6-7 Sample Location Map FM-1 Area	51
Figure 6-8 Frisco Mine Area Geology Map	53
Figure 6-9 Gerle Gold Granite Resource Area	62
Figure 6-10 Gerle Gold Dome May 1988 Plan Map with Resource Polygons	65
Figure 6-11 Mohave Mining Inc Resource Plan Map	66
Figure 6-12 Gold Dome Surface Plan 1988	69
Figure 7-1 Regional Geology Map	72
Figure 7-2 District Geology	75
Figure 7-3 Local Geology Map	78
Figure 7-4 Gold Dome Local Geology Map	80
Figure 7-5 Gold Crown Local Geology Map	82
Figure 7-6 Vertical section thru Frisco vein. Not drawn to scale	82
Figure 7-7 Section 16 Local Geology Map	84
Figure 10-1 1973 Drilling at Gold Crown	90
Figure 10-2 Frisco Patented Claims Drill Hole Location Map	99
Figure 10-3 Section 16 Drill Hole Location Map and Section Lines	100
Figure 10-4 Gold Crown Section 16,450N	101
Figure 10-5 Gold Crown Section 15,800N	102
Figure 10-6 Gold Dome Section 14,750N	103
Figure 10-7 Gold Dome Section 13,900N	104
Figure 10-8 Gold Dome Section 14,300E	105
Figure 10-9 Section 16 Granite Zone Section 1+00 NW	106
Figure 10-10 Section 16 Granite Zone Section 13+00 SW	107
Figure 10-11 Section 16 Granite Extension Baseline	108

Figure 10-12 Section 16 Granite Extension Section 0+00 SW	109
Figure 12.2-1 Mohave Mining RC Drill Hole	117
Figure 12.2-2 Hole B83-22	
Figure 12.6-1 2019 Rock Chip Au Values	121
Figure 14-1 Histogram of Sample Intervals for Gold Dome	130
Figure 14-2 Histograms of Gold Dome assay samples showing gold grade distribution	131
Figure 14-3 Histogram of Gold Dome LogAu values of assay data	132
Figure 14-4 Gold Dome LogAu Cumulative Frequency plot	133
Figure 14-5 Histogram of Lithologies Showing Sample Count	134
Figure 14-6 Gold Dome Section 14,300 E Gerle Gold	135
Figure 14-7 Gold Dome Section 13,700 E Mohave Mining	136
Figure 14-8 Omnidirectional Horizontal Variogram	137
Figure 14-9 Vertical Variogram	138
Figure 14-10 Drill Hole Locations for Gold Dome Resource	139
Figure 14-11 Gold Dome block model using 85x85x15 search parameters	141
Figure 14-12 3D Block Model for Gold Dome showing values > .0123 Au oz/ton	142
Figure 14-13 Visual Comparison of Assay vs Block Grade, 13,700E	143
Figure 14-14 Visual Comparison of Assay vs Block Grade, 14,300E	144
Figure 14-15 Gold Dome Grade/Tonnage curve for in-situ resource	146
Figure 14-16 Resource classification for Gold Dome	147
Figure 14-17 Histogram of Sample Intervals for Granite	148
Figure 14-18 Histograms of Granite assay samples showing gold grade distribution	149
Figure 14-19 Histogram of Granite LogAu values of assay data	150
Figure 14-20 Granite LogAu Cumulative Frequency plot	152
Figure 14-21 Histogram of Granite Lithologies Showing Sample Count	153
Figure 14-22 Granite Section 13+00 SW Gerle Gold	154
Figure 14-23 Granite Sections in 3D	155
Figure 14-24 Omnidirectional Horizontal Variogram	156
Figure 14-25 Vertical Variogram	157
Figure 14-26 Drill Hole Locations for Granite Resource	158
Figure 14-27 Granite block model using 115x115x15 search parameters	160
Figure 14-28 Granite Block Model showing values > .0123 Au oz/ton	161
Figure 14-29 Visual Comparison of Assay vs Block Grade, Section 1NW	162
Figure 14-30 Visual Comparison of Assay vs Block Grade, L13SW	162
Figure 14-31 Granite Grade/Tonnage curve for in-situ resource.	164
Figure 14-32 Proposed in-fill drilling at the Granite deposit	168
Figure 19-1 Five year gold price (source: Kitco.com)	175

Tables

Table 1.8.1-2 Gold Dome in-situ classification of Tonnage/Grade values for 0.0123 cutoff	21
Table 1.8.2-1 Granite block model parameters	21
Table 1.8.2-2 2015 Granite in-situ Tonnage/Grade values for varying cutoffs	23
Table 1.8.2-3 Granite in-situ classification of Tonnage/Grade values for 0.0123 cutoff	24
Table 1.9-1 Proposed Budget	25
Table 4.2-1 Patented Lode Mining Claims	32
Table 4.5-1 Potential Permits Required for the Frisco Project	36
Table 6.2-1 Documented Recent Work on the Frisco Property	40
Table 6.6-1 Summary of Holes Drilled at Frisco Project	56
Table 6.7-1 Granite Zone Holes used for 1987 Resource Calculation	61
Table 7.4-1 Summary of Holes Drilled at Frisco Project	88
Table 10.1-1 Summary of Gold Grades for 1972 Red Dog Drilling	89
Table 10.2-1 Summary of Drilling completed in 1987 by Gerle Gold/Mahogany Minerals JV	93
Table 10.2-2 Summary of Drilling completed pre-Aug Dec 1987 by Gerle Gold/Mahogany Minerals JV	93
Table 10.2-3 Summary of Drilling completed Aug thru Dec 1987 by Gerle Gold/Mahogany Minerals J	1.94
Table 10.2-4 Summary of Drilling completed in 1988 by Gerle Gold/Mahogany Minerals JV	96
Table 10.4-1 Documented Exploration Work on the Frisco Property	. 110
Table 11.3-1 Summary of Assay Labs, Samples for Each Company	. 112
Table 12.4-1 Assay Labs Used and QA/QC Methodology	. 118
Table 12.4-2 1989 Mohave Mining Inc - Frisco Gold Dome check assays	. 119
Table 12.4-3 Graph of 1989 Mohave Mining Inc - Frisco Gold Dome check assays	.120
Table 12.6-1 2019 Rock Chip Sample Description	. 121
Table 12.6-2 2019 Rock Chip Assay Results	. 121
Table 14.2-1 Frisco Control Points	. 127
Table 14.2-2 Resource Drill Hole Summary	. 127
Table 14.5-1 Sample Intervals Descriptive Statistics for Gold Dome	. 130
Table 14.5-2 Statistics for Gold Dome gold values above detection limit	
Table 14.5-3 Gold Dome 3D Block Model Limits	. 139
Table 14.5-4 Gold Dome Drill Hole Summary sorted by Company	. 139
Table 14.5-5 Block Model parameters used to calculate the Gold Dome Resource	. 140
Table 14.5-6 2019 Gold Dome in-situ Tonnage/Grade values for varying cutoffs	. 145
Table 14.5-7 2018 Gold Dome in-situ classification of Tonnage/Grade values for 0.0123 cutoff	. 146
Table 14.6-1 Sample Intervals Descriptive Statistics for Granite	. 148
Table 14.6-2 Statistics for Granite gold values above detection limit	. 149
Table 14.6-3 Granite 3D Block Model Limits	. 158
Table 14.6-4 Granite Drill Hole Summary sorted by Company	. 158
Table 14.6-5 Block Model parameters used to calculate the Granite Resource	. 159
Table 14.6-6 2018 Granite in-situ Tonnage/Grade values for varying cutoffs	. 164
Table 14.6-7 2018 Granite in-situ classification of Tonnage/Grade values for 0.0123 cutoff	. 166
Table 14.7-1 In-situ resource for Gold Dome and Granite Deposits	. 167
Table 26.2-1 Proposed Budget	. 195

Appendix

Appendix	Name
А	QP Certification
В	Kaolin Deposit Info
С	List of Drillholes
D	1987 Metallurgy
E	1988 Metallurgy
F	2015 Metallurgy
G	1987 Survey Files
Н	2015 Survey Files
	Collar Info for Granite, Gold Dome

1 EXECUTIVE SUMMARY

Briefly summarize important information in the technical report, including property description and ownership, geology and mineralization, the status of exploration, development and operations, mineral resource and mineral reserve estimates, and the qualified person's conclusions and recommendations.

The author considers the Frisco Project to be a project of merit and recommends that further work be conducted simultaneously with the planned final engineering and permitting efforts.

It is recommended that initial efforts be concentrated on the Gold Dome deposit. Additional drilling and testing of the Granite deposit could be done after the Gold Dome production is underway.

Additional metallurgical test work (column tests) on the Gold Dome is required in advance of final decisions on optimal crush size and scheduled time under leach.

1.1 Introduction

In April 2019, Ms. Barbara Carroll, BSc, CPG ("Ms. Carroll") was engaged by Frisco Gold Corporation, a sub-chapter S Corporation incorporated in Arizona, to produce a Technical Report on the Frisco Gold Project in Mohave County, Arizona. The gold mineralization at the Frisco is primarily related to a gold-silver stock-work, brecciated, low sulphidation, epithermal vein system associated with regional scale faulting. Since the 1970s, numerous companies including Red Dog Mining, Frisco Land and Mining, and Gerle Gold explored the property and completed non-NI 43-101 compliant resource estimates. There is no affiliation between Ms. Carroll and Frisco Gold Corporation except that of an independent consultant/client relationship.

The purpose of this report is to document the history, geology, known mineral resource, and exploration potential of the Frisco Property and to demonstrate that the historical data confirm that the project merits additional work pursuant to the guidelines set forth by the Canadian National Instrument 43-101. The report is based on the abundant geologic and historic information available from the many sources documented in the Reference Sections and on other information that is available in the Company files.

The company requested the report conform to the format of a NI 43-101 report. The NI 43-101 technical reporting requirements used by the Canadian Securities Administrators have been recognized by securities exchange regulators for publicly traded securities around the world as a standard for mineral exploration and mining companies. While the technical report adheres to the same format of an NI-43-101 report, the company is not governed by the regulations of the Canadian Securities Administrators, and no securities regulator has reviewed this report.

1.2 Project Description and Location

The Frisco Property is located in the Black Mountains of Mohave County, Arizona, 25 mi west of Kingman, Arizona (population ~28,000), 9 miles east of Bullhead City, Arizona, and 90 miles south of Las Vegas, Nevada within the San Francisco mining district.

The Frisco property comprises of 11 patented claims in Sections 9, 15 and 16, originally known as the Tragedy Group, and was located about two miles southwest of Union Pass in 1894 (Housholder, 1964). A State mineral lease covering most of the remainder of Section 16 was added to the land position in 2019.

There are three principal areas of historic exploration within the project area, Gold Dome, Gold Crown, and Granite Extension.

Figure 1.1: View looking northeast towards the project area.

The eleven Frisco Land & Mining Company (FLMC) patented mining claims are subject to a Mining Lease Agreement made between the Company and FLMC in 2018. The lease is subject to monthly payments of \$2000 and royalty is 6 % on first 10,000 ounces and 2% thereafter and 2% on any outside ore processed on the property.

1.3 Accessibility, Climate, Local Resources, Infrastructure and Physiography

The Frisco Project can be readily accessed by taking paved Arizona highway 68 easterly from Bullhead City for 8 miles or paved Arizona Highway 93 west of Kingman 2.7 miles to AZ-68 W towards Bullhead City/Laughlin for 18.8 miles to milepost 8. From milepost 8 on Hwy 68 turn north onto Old Kingman Highway, which is 1.4 miles from this point by gravel and dirt roads to the property. Travel time from Bullhead City airport o the property is 10 minutes and Kingman to the property is about 33 minutes. There are a number of 4-wheel drive vehicle accessible roads available to enable sufficient access for early access to the entire Project area.

Bullhead City with a population of 45,000 and Kingman with population of 28,000 each have a welldeveloped infrastructure of stores and shops for supplies, restaurants and motels. Both Bullhead City and Kingman, Arizona have a number of construction companies, and Las Vegas, Nevada is 110 miles from the property. Experienced mine workers and technical personnel are locally available as a nearby large copper/moly mine closed recently.

Water is available from the underground workings. A pump in well casing in an old shaft was used to fill an on-site water reservoir during the four-lane re-construction of Highway 68. High voltage lines are located less than one mile from the property. Low voltage lines service a housing development 3 miles south of the property. The patented claims cover approximately 200 acres, within which there are areas of sufficient size for mining infrastructure.

The property covers a semi-desert environment typical of much of Arizona. The vegetation is limited to sparse grass, low prickly bushes, sagebrush, and cacti. A few ephemeral springs are located on the property. Average monthly temperatures range from a low of 31°F in January to a high of 96°F in July. The average rainfall is 9.3 inches. Although flash floods caused by thunderstorms in late summer may hamper exploration for brief periods, exploration and mining can be conducted year-round on the property.

The topography is moderate to locally rugged, with elevations ranging from 2,600 ft to 4,100 ft above sea level. Elevation is about 3000 feet in the vicinity of the proposed pit. The area is characterized by a series of rugged, rock ridges trending northwest, with intervening valleys of low relief. Gullies are numerous. Rock exposure is abundant along the ridges and prominent hills but is much less in the lower valleys which tend to be overlain by gravel, talus, and shallow soil.

1.4 History

Gold was discovered on the Frisco property in 1893, and there has been sporadic production since then. Between 1893 and 1930, approximately 40,000 tons of ore grading 0.40 to 0.60 opt Au were produced from stopes in the main mine workings. Their production costs were about 0.20 opt Au. Part of this tonnage was processed on the property and part was milled at the Katherine Mill on the Colorado River, about 7 miles west of the mine.

During the last period of production from 1984 to 1986, approximately 2300 ounces of gold were leached from ore on the property. Production ceased when the price of gold fell below \$300.00 per ounce and the stripping ratio reached 2:1. (Huskinson E. , 1988)

During 1972, a Canadian company, Red Dog Mining (Chester Millar) negotiated a 10-year metal mining lease on the property with Frisco Land and Mining Co. and conducted test drilling in both the Gold Crown and Gold Dome orebodies. He established a proven reserve of 6000 tons of ore grading 0.13 oz/ton gold in the Gold Crown zone and a probable reserve of 30,000 tons grading .08 in the Gold Dome zone. These were not deemed economic, and again the property lay dormant until the same person, (Millar), with the assistance of Frisco Land and Mining Co., drilled the Gold Dome orebody again in 1982. This drilling proved the 30,000 tons grading .08 oz/ton gold and indicated additional lower grade reserves. These were not deemed economic and Millar dropped his lease on the property (Bonelli, 1984).

In 1980, Chester Millar with Red Dog Mining drilled 20 holes in Section 16.

Frisco Land and Mining Co (FLMC). initiated feasibility work in December of 1982 and test drilled one of the two known ore bodies in April of 1983. Development work commenced in September and the first gold was shipped 11 months later. (1984 Doug Bonelli – AGS field trip). Approximately 66,000 tons of ore at an average grade of 0.058 oz/ton was processed between 1984-1986 Production ended in 1986 when the price of gold fell to \$325/oz and the stripping ratio reached 2:1 on the north side of the producing pit in the Gold Dome Zone (Richardson, 1987).

In 1987, Gerle Gold Ltd entered into an agreement with FLMC, acquired the right to explore, develop and mine the Frisco property. Gerle Gold and Mahogany Minerals Resources Ltd. reached agreement in principle to joint venture the exploration and development of the Property and surrounding area on a 50:50 basis. Gerle Gold JV drilled two phases of core and reverse circulation holes in 1987 and 1988 for a total of 19,028 feet in 115 drill holes on the Frisco and State Section 16 property.

In 1988, Ivernia West PLC signed a joint venture agreement covering the Frisco and Granite properties, with Gerle Gold (U.S.) Inc. In1989, they drilled 37 holes totaling 4,620 feet to confirm reserves remaining in the western deposit and to prove the eastern extension of the Gold Dome deposit and to drill test a target on the Granite property. Several metallurgical tests were carried out by Hazen Research. The Frisco patented claims and State Section 16 have seen essentially no site work since Ivernia explored the property.

The principals of Frisco Gold Corporation optioned the property in April 2011. Since that time they have resurveyed the property boundaries, collected a sample from the Gold Dome deposit for metallurgical testing, commissioned a resource estimation by Robert Flesher, CPG to confirm historic resource calculations, compiled the existing data available on the project, and contracted with Barbara Carroll, CPG to create a technical report on the project to document the history, geology, known mineral resource, and exploration potential of the Frisco Property and to demonstrate that the historical data confirm that the project merits additional work pursuant to the guidelines set forth by the Canadian National Instrument 43-101. While the technical report adheres to the same format of an NI-43-101 report, the company is not governed by the regulations of the Canadian Securities Administrators.

1.5 Geology and Mineralization

The Black Mountains of western Arizona are located within the Basin and Range tectonic province. The dominant rocks are Precambrian granitic to mafic intrusive rocks and metamorphic rocks, which are overlain by Tertiary andesitic to rhyolitic flows, tuffs, and volcaniclastic sedimentary rocks. Rhyolite dikes, sills, and plugs are common and cut both the basement rocks and the overlying Tertiary rocks. The main structural feature in the region is an imbricated system of shallow to steeply dipping faults trending north-northwest. This system has been traced to the north from the Oatman District, through the Secret Pass – Frisco Mine area, into the Van Deemen area some 40 mi to the north. Two major, generally low-angle, detachment fault structures have been identified over this distance – the Union Pass fault system and the Frisco Mine fault system. Both fault systems are sinuous with variable dips and splays, and both are locally offset by later structures.

There are two ore bodies on the Frisco patented claims, both hosted in volcanic rocks: the Gold Crown and the Gold Dome. In addition, State Section 16 hosts both the Granite and Granite Extension areas to the southwest where gold mineralization occurs in Precambrian rocks.

Gold deposits occur throughout the Black Mountains of western Mohave County. Gold is the only valuable metal (except a minor amount of associated silver) found in the range; there is a remarkable similarity in the occurrence of gold in the veins. The Black Mountains have historically produced in excess of 2.5 M oz of gold. Numerous gold showings and prospects are directly associated with the Union Pass and Frisco Mine faults, and some with reported production.

The gold mineralization at the Frisco property is primarily related to a gold-silver stock-work, brecciated, low sulphidation, epithermal vein system associated with regional scale faulting. Mineralization of this type is found at the Oatman District, south of the project area. Mineralization is also related to low-angle detachment faulting with gold deposition occurring as a result of fluid mixing at an oxidation-reduction boundary. Mineralization of this system has been traced to the north from the Oatman District, through the Secret Pass – Frisco Mine area, into the Van Deemen area some 40 mi to the north.

The Gold Dome gold deposit occurs as a blanket-like deposit, generally conformable to the volcanic stratigraphy but severely disrupted by post-mineral faulting. The mineralized zone, which varies from a few feet to 60 feet in thickness, dips northerly at about 25 degrees on the southern exposure, flattens, and then reverses to a gentle southerly dip. The long axis of the zone of interest strikes east to northeasterly. Gold mineralization is hosted in quartz-cemented breccias of rhyolite porphyry and andesite. The gold is finely disseminated and probably occurs as micron-sized particles. Silver values are generally equivalent to gold values. Base metals are absent.

The Granite deposit occurs as a blanket like deposit, which varies from a few feet to several hundred feet in thickness, strikes generally east/west. Gold mineralization is hosted in quartz-cemented breccias of propylitically altered preCambrian granite which is overprinted by mineralization. The gold is finely disseminated and probably occurs as micron sized particles.

1.6 Exploration, Drilling, Sampling, Analysis, and Data Verification

Gold was discovered on the Frisco property in 1893, and there has been sporadic production since then. Between 1893 and 1930, approximately 40,000 tons of ore grading 0.40 to 0.60 opt Au were produced from stopes in the main mine workings. Their production costs were 0.20 opt Au. Part of this tonnage was processed on the property and part was milled at the Katherine Mill on the Colorado River, about 7 miles west of the mine.

During 1972, Red Dog Mining (Chester Millar) leased the property and conducted test drilling in both orebodies. He established a proven reserve of 6,000 tons of ore grading .13 oz/ton gold in the Gold Crown zone and a probable reserve of 30,000 tons grading .08 in the Gold Dome zone. Frisco Land and Mining Co. initiated feasibility work in December of 1982 and test drilled one of the two known ore bodies in April of 1983. Development work commenced in September and the first gold was shipped 11 months later. From 1984 to 1986, approximately 2300 ounces of gold were leached from ore on the

property. Production ceased when the price of gold fell below \$300.00 per ounce and the stripping ratio reached 2:1. (Huskinson E., 1988). The Gerle Gold/Mahogany Minerals JV conducted reconnaissance geological mapping, as well as extensive drilling, prospecting and rock sampling on the property from 1987 thru 1988. In 1989, Ivernia West plc, through its newly established subsidiary, Mohave Mining Inc., drilled out an indicated deposit on the Gold Dome deposit on the Frisco property and to drill tested the Granite extension in Section 16. There are several historic resource estimates as well as metallurgical testing on the project. In 2015, Frisco Gold Corporation performed additional metallurgical testing and created a resource estimate following NI43-101 guidelines.

Between 1972 and 1989 over 250 holes were drilled on the Frisco property to explore and define mineralization. Drilling was conducted by Red Dog Mining (Chester Millar) of Vancouver, B.C. in the early 1970s and 1982 followed by Frisco Land and Mining Company (Bonelli) from 1983-1985. Gerle Gold in a Joint venture with Mahogany Minerals conducted two phases of drilling in 1987 and 1988, followed by Ivernia West thru its subsidiary Mohave Mining Inc. in 1989. An inventory of known drilling on the project totals 36,135 feet in 289 holes including 10 core, 131 reverse circulation and 48 air track holes. No drilling on the Frisco project area has been undertaken by Frisco Gold Company.

There were no descriptions found of sample preparation methods, sample security measures or chain of custody procedures utilized by any of the companies that collected surface samples at the Frisco project.

The modeling and resource estimation utilized digital topography of the project area and the drill hole database compiled by GeoGRAFX GIS Services. The extracted drill hole database for the Frisco patented claims contains 173 unique collar records and 2.143 assay records; State Section 16 contains 141 unique collar records and 3,038 assay records. There are two resource areas considered in this report within the Frisco project; the Gold Dome Deposit on the Frisco patented claims, and the Granite Deposit on State Section 16. These 2 resources were treated separately. Drill holes from each resource area were imported into MapInfo/Discover databases. The extracted database for Gold Dome contains 115 drill holes totaling 12,658 feet. The extracted database for Granite contains 33 drill holes from the 1987-1989 drilling totaling 7699 feet.

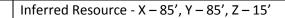
Industry standard validation checks of the database were carried out with minor corrections made where necessary. The database was interrogated for inconsistencies in naming conventions or analytical units, duplicate entries, interval, length or distance values less than or equal to zero, blank or zero-value assay results, out-of-sequence intervals, intervals or distances greater than the reported drill hole length, inappropriate collar locations, and missing interval and coordinate fields. No significant discrepancies with the data were noted.

1.7 Metallurgical Testing

A pilot scale heap leach operation at Gold Dome was conducted in 1983-4. Recoveries of 60% at 1 inch and 70% at 1/2 inch during a 30-day leach cycle were characteristic of processing the 60,000. tons excavated from the Gold Dome pit.

Bottle roll testing was conducted on two samples by McClelland Laboratories from the Granite deposit in 1987. Both samples were readily amenable to direct cyanidation at a nominal -200 mesh feed size. Recoveries were 92.9% and 92.3% respectively for the two samples at the end of the 96-hour tests. Recovery was fairly rapid with 49% of the gold was recovered in 6 hours. Cyanide consumption was low for both samples and lime requirements were high.

In April 1988, Gerle Gold Ltd. commissioned Gary W. Hawthorne, P. Eng., of Vancouver, B.C., Canada, a Consulting Mineral Processing Engineer, to conduct leaching tests on selected samples of Frisco material from the Gold Dome, Gold Crown and Granite deposits. Most of the samples were tested for recovery of gold and silver by cyanide in bottle roll tests after grinding. Also included were tests of crushed material and bucket tests of un-crushed material. The results were mixed but Hawthorne concluded that finer crushing would be beneficial.


Tri-R (Frisco Gold Corporation) submitted Gold Dome deposit material to McClelland Laboratories Inc. during May 2015 for bottle roll tests. Gold recovery after 96 hours of bottle roll testing was 49.9% for the -3/8 material and 63.9% recovery for the -1/4-inch material. McClelland opined that the results from column tests "would be markedly higher" as was the case for material from other properties in the area.

1.8 Data Modelling and Resources

The modeling and estimation utilized digital topography of the project area and the drill hole database compiled by GeoGRAFX GIS Services. Drill holes with assay samples within the Gold Dome and Granite project areas were imported into separate MapInfo/Discover database. Not enough information was available to include lithology in modeling or resource estimation. Datamine Discover 3D software was used to produce a block model to evaluate the size of the resource. Table 1.8.1-1 lists the block model parameters used for the Gold Dome resource are listed below. Parameters used for the Granite resource are listed in Table 1.8-2.

Table 1.8.1-1 Gold Dome	e block model parameters
Drill Holes:	Total of 115 drill holes totaling 12,658 feet
	and 1,597 assay values were used to build the resource model
Composites:	No sample compositing. 86% of samples are 5 feet in length within the Gold Dome
	deposit were used to assign values to the blocks in the resource
Average Grade:	Gold: 0.013 oz/t (0.000 oz/t – 0.765 oz/t)
Capping:	0.765 was set to 0.26.
Tonnage Factor:	12.5 cu. ft./ton
Interpolation	Inverse Distance squared (ID2)
Method:	Minimum of 1 and maximum of 16 samples to use
Block Model:	Model Origin (X, Y, Z): (14290, 14890, 3080), no rotation
	Column Size 15 feet, 119 columns
	Row size 15 feet, 77 rows
	Level size 15 feet, 30 Levels
Search Ellipse:	Bearing:0, Inclination: 0, Tilt:0

1.8.1 Gold Dome Resource

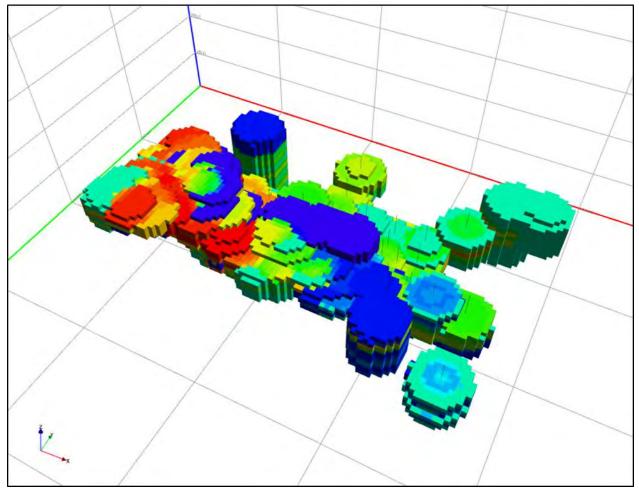


Figure 1.8.1-1 Gold Dome block model using 85x85x15 search parameters.

Inverse Distance Squared method was used for the Discover3D voxel calculations for an in-situ resource. The parameters used are listed above. These numbers should be considered mathematical estimates only. Geology was not considered as part of the estimate; a more robust estimate would be obtained if the underlying geology and structure were considered.

The Gold Dome mineral resources were calculated using various cutoff grades. A value of 0.0123 oz/ton was chosen for the optimal cut-off grade based on the approximate average price of gold (\$1,295), operating costs and expected gold recovery. This cutoff was chosen to capture mineralization potentially available to open-pit extraction and heap-leach processing.

Figure 1.8.1-2 shows the block model for the Gold Dome resource. It shows Au values greater than the .0123 Au oz/ton cutoff. Each block is $15' \times 15' \times 15'$.

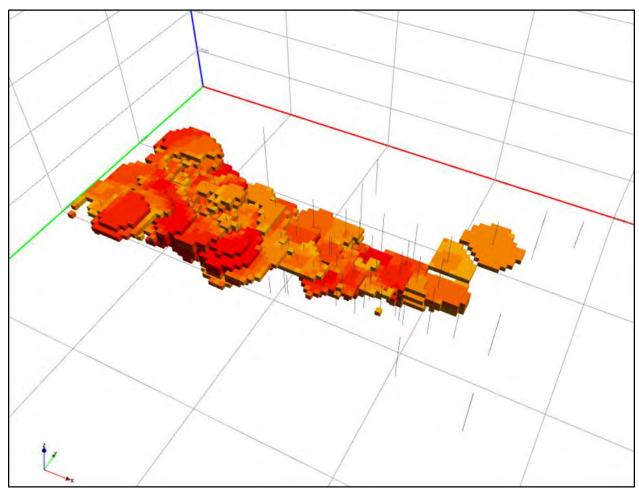


Figure 1.8.1-2 3D Block Model showing values > .0123 Au ozt.

Cutoff			Grade	
(oz Au/ton)	Volume ft3	Tons	Au Oz/ton	Oz Au
0.0050	22,740,750	1,819,260	0.024	43,662
0.0080	17,482,500	1,398,600	0.029	40,559
0.0100	15,413,625	1,233,090	0.032	39,459
0.0123	13,172,625	1,053,810	0.035	36,883
0.0150	11,053,125	884,250	0.039	34,486
0.0200	8,673,750	693,900	0.045	31,226
0.0300	5,312,250	424,980	0.058	24,649
0.0500	2,230,875	178,470	0.085	15,170
0.1000	448,875	35,910	0.141	5,063

Table 1.8.1-1 2015 Gold Dome in-situ Tonnage/Grade values for varying cutoffs

The Gold Dome resource is classified based on the number and distance of assays used in the interpolation of a block gold grade, as well as the number of holes that contributed values to the interpolation as well as the quality of the historic data. Currently, there are Indicated and Inferred resources within the Gold Dome Deposit. Table1.8.1-3 lists the Gold Dome Indicated and Inferred mineral resource at a 0.0123 of cut-off grade.

Classification	Inferred		sification Inferred Indicated (Measured+Indicated blocks)		ndicated	
Cutoff	Tons	Grade	Oz Au	Tons	Grade	Oz Au
0.0123	369,630	0.037	13,676	662,310	0.036	23,843

Table 1.8.1-2 Gold Dome in-situ classification of Tonnage/Grade values for 0.0123 cutoff

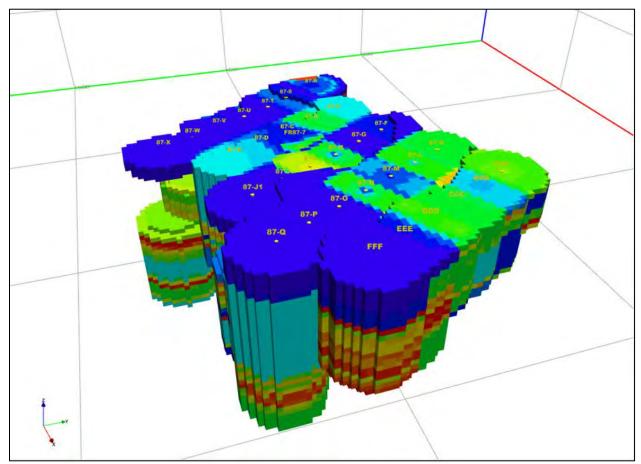
Notes:

1. The definitions of indicated and inferred mineral resources reported here are as defined in the CIM Standards on Mineral Resources and Mineral Reserves adopted by the CIM Council, as amended.

2. Inferred resource estimates have a great amount of uncertainty as to their existence and economic feasibility. There is no certainty that all or any part of an inferred mineral resource will ever be upgraded from an inferred resource to an indicated resource category. Estimates of inferred mineral resources may not form the basis of a feasibility or pre-feasibility study but may be used in connection with a preliminary economic assessment.

Tonnage and grades are in imperial units (feet, troy ounces and short tons). Contained gold ounces are reported as troy ounces.
 Block grades for gold were estimated from assay samples using inverse distance squared (IDS) interpolation into 15x15x15 ft blocks.

5. Maximum search distances used to calculate indicated resources are 40ft, while inferred resources were calculated using maximum distances of 85ft from the block being estimated.


6. The contained gold figures shown are in situ. No assurance can be given that the estimated quantities will be produced.

7. Mineral resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add due to rounding.

1.8.2 Granite Resource

Table 1.8.2-1 Granite block model parameters

Tuble 1.0.2 1 Grunne bio	ock model parameters
Drill Holes:	Total of 33 drill holes totaling 7,699 feet
	and 1,399 assay values were used to build the resource model
Composites:	No sample compositing. 97% of samples are 5 feet in length within the Granite
	deposit were used to assign values to the blocks in the resource
Average Grade:	Gold: 0.0063 oz/t (0.000 oz/t – 0.481 oz/t)
Capping:	0.481 was set to 0.16.
Tonnage Factor:	12.5 cu. ft./ton
Interpolation	Inverse Distance squared (ID2)
Method:	Minimum of 1 and maximum of 16 samples to use
Block Model:	Model Origin (X, Y, Z): (12060, 11220, 2250ft), no rotation
	Column Size 15 feet, 110 columns
	Row size 15 feet, 76 rows
	Level size 15 feet, 48 Levels
Search Ellipse:	Bearing:0, Inclination: 0, Tilt:0
	Inferred Resource - X – 115', Y – 115', Z – 15'

Figure 1.8.2-1 Granite block model using 115x115x15 search parameters.

Inverse Distance Squared method was used for the Discover3D voxel calculations for an in-situ resource. The parameters used are listed above. These numbers should be considered mathematical estimates only. Geology was not considered as part of the estimate; a more robust estimate would be obtained if the underlying geology and structure were considered.

The Granite mineral resources were calculated using various cutoff grades. A value of 0.0123 oz/ton was chosen for the optimal cut-off grade based on the approximate average price of gold (\$1,295) for the past three years, operating costs and expected gold recovery. This cutoff was chosen to capture mineralization potentially available to open-pit extraction and heap-leach processing.

Figure 1.8.1-2 shows the block model for the Granite resource. It shows Au values greater than the .0123 Au oz/ton cutoff. Each block is $15' \times 15' \times 15'$.

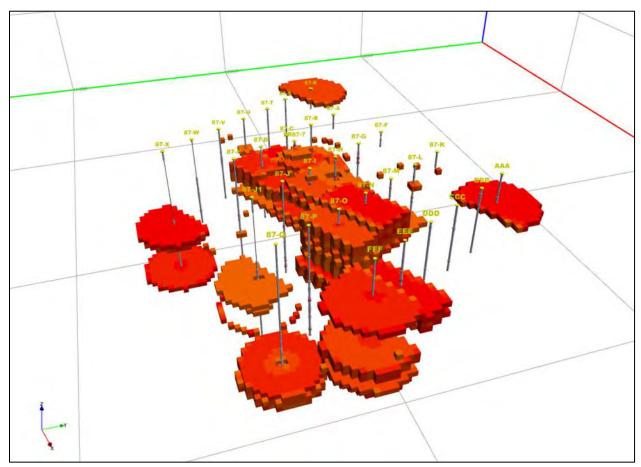


Figure 1.8.2-2 Granite 3D Block Model showing values > .0123 Au oz/ton.

Cutoff			Grade	
(oz Au/ton)	Volume ft3	Tons	Au Oz/ton	Oz Au
0.0050	60,139,125	4,811,130	0.012	57,734
0.0080	36,156,375	2,892,510	0.016	46,280
0.0100	27,769,500	2,221,560	0.018	39,988
0.0123	20,712,375	1,656,990	0.02	33,140
0.0150	14,647,500	1,171,800	0.023	26,951
0.0200	7,357,500	588,600	0.029	17,069
0.0300	1,441,125	115,290	0.053	6,110
0.0500	577,125	46,170	0.073	3,370
0.1000	0	0	0	0

Table 1.8.2-2 2015 Granite in-situ Tonnage/Grade values for varying cutoffs

The Granite resource is classified based on the number and distance of assays used in the interpolation of a block gold grade, as well as the number of holes that contributed values to the interpolation as well as the quality of the historic data. Currently, there are Indicated and Inferred resources within the

Granite Deposit. Table1.8.2-3 lists the Gold Dome Indicated and Inferred mineral resource at a 0.0123 of cut-off grade.

Classification	Inferred		assification Inferred Indicated (Measured+Indicated blo		blocks)	
Cutoff	Tons	Grade	Oz Au	Tons	Grade	Oz Au
0.0123	1,656,990	0.02	33,140			

Table 1 & 2-3 Granite in	-situ classification	of Tonnage/Grade values	for 0.0123 cutoff
Tuble 1.0.2-5 Grunnle II	-situ ciussijicution	of Tollluge/Grude values	JUI 0.0125 CULUJJ

Notes:

1. The definitions of indicated and inferred mineral resources reported here are as defined in the CIM Standards on Mineral Resources and Mineral Reserves adopted by the CIM Council, as amended.

2. Inferred resource estimates have a great amount of uncertainty as to their existence and economic feasibility. There is no certainty that all or any part of an inferred mineral resource will ever be upgraded from an inferred resource to an indicated resource category. Estimates of inferred mineral resources may not form the basis of a feasibility or pre-feasibility study but may be used in connection with a preliminary economic assessment.

Tonnage and grades are in imperial units (feet, troy ounces and short tons). Contained gold ounces are reported as troy ounces.
 Block grades for gold were estimated from assay samples using inverse distance squared (IDS) interpolation into 15x15x15 ft blocks.

5. Maximum search distances used to calculate inferred resources were calculated using maximum distances of 115ft from the block being estimated.

6. The contained gold figures shown are in situ. No assurance can be given that the estimated quantities will be produced.

7. Mineral resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add due to rounding.

1.8.3 Resource Summary

The in-situ mineral resource estimate for the Gold Dome and Granite deposits are presented in Table 1.8.3-1.

Deposit	Classification	Inferred			Indicated (Meas	ured+Indicated	l blocks)
	Cutoff	Tons	Grade	Oz Au	Tons	Grade	Oz Au
Gold Dome	0.0123	369,630	0.037	13,676	662,310	0.036	23,843
Granite	0.0123	1,656,990	0.02	33,140			

Table 1.8.3-1 In-situ resource for Gold Dome and Granite Deposits

The in-situ mineral resource estimate for the Gold Dome and Granite deposits are not a mineral reserve and may be materially affected by environmental, permitting, legal, socio - economic, marketing, political, or other factors.

1.9 Conclusions and Recommendations

The author has reviewed the historical Frisco project data, verified the drill-hole database, attained an understanding of the extent of historical QA/QC procedures implemented, and visited the project site. Based on this work, it is the opinion of the author that the project data are generally an accurate and reasonable representation of the Frisco project and adequately support the mineral resource estimation.

The author considers the Frisco Project to be a project of merit and recommend that further work be conducted to increase the confidence in the resource model, metallurgy and geotechnical knowledge as well as the engineering, permitting and environmental requirements necessary for development and operation.

It is recommended that initial efforts be concentrated on the Gold Dome deposit. Additional drilling and testing of the Granite deposit could be done after the Gold Dome production is underway.

Additional metallurgical test work (column tests) on the Gold Dome is required in advance of final decisions on optimal crush size and scheduled time under leach.

A budget of \$550,000 dollars for permitting, engineering and design, condemnation drilling, metallurgical studies, environmental studies and mine and facilities planning is recommended to move the Project through the development stage.

The anticipated costs for the recommended scope of work are presented below.

Table 1.9-1 Proposed Budget

Recommended Scope of Work	Detail	Cost (US\$)
Phase 1		
Federal & State Permitting		\$210,000
Engineering & Design		\$240,000
Drilling & Met verification tests		\$50,000
Legal, Accounting, Insurance Start-up		\$50,000
Total		\$550,000

2 INTRODUCTION

(a) the issuer for whom the technical report is prepared;

(b) the terms of reference and purpose for which the technical report was prepared;

(c) the sources of information and data contained in the technical report or used in its preparation, with citations if applicable; and

(d) the details of the personal inspection on the property by each qualified person or, if applicable, the reason why a personal inspection has not been completed.

In April 2019, Ms. Barbara Carroll, BSc, CPG ("Ms. Carroll") was engaged by Frisco Gold Corporation, a private corporation incorporated in Arizona under provisions of a sub-chapter S Corporation to produce a Technical Report on the Frisco Gold Project in Mohave County, Arizona. The gold mineralization at the Frisco is primarily related to a gold-silver stock-work, brecciated, low sulphidation, epithermal vein system associated with regional scale faulting. Since the 1970s, numerous companies including Red Dog Mining, Frisco Land and Mining, and Gerle Gold explored the property and completed non-NI 43-101 compliant resource estimates.

The company requested the report conform to the format of a NI 43-101 report. The NI 43-101 technical reporting requirements used by the Canadian Securities Administrators have been recognized by securities exchange regulators for publicly traded securities around the world as a standard for mineral exploration and mining companies. While the technical report is prepared in accordance with the NI 43-101 requirements and qualifying statements, at this time as the company is not governed by the regulations of the Canadian Securities Administrators, the report will not be submitted or reviewed by any Canadian Securities Administrators. This means that although the report has been written with the intent to fulfill the rules and policies for technical disclosure, the report has not been reviewed by any Canadian securities regulators.

The purpose of this report is to document the history, geology, known mineral resource, and exploration potential of the Frisco Property and to demonstrate that the historical data confirm that the project merits additional work pursuant to the guidelines set forth by the Canadian National Instrument 43-101. The report is based on the abundant geologic and historic information available from the many sources documented in the Reference Sections and on other information that is available in the Company files.

The quality of information, conclusions, and estimates contained herein is consistent with the level of effort by the qualified persons, based on: 1) information available at the time of preparation, 2) data supplied by outside sources, and 3) the assumptions, conditions, and qualifications set forth in this report. The responsibility for this disclosure remains with Frisco Gold Corporation.

1.1 Qualifications of Qualified Persons

Barbara Carroll, CPG, by virtue of her education, experience and professional association, is considered a Qualified Persons (QP) for this report and is a member in good standing of appropriate professional institutions. There is no affiliation between Ms. Carroll and Frisco Gold Corporation except that of an independent consultant/client relationship. QP certificate of the author is provided in Appendix A.

Technical data and information used in the preparation of this report also included some documents prepared by third party contractors. The authors' sourced information from referenced documents are cited in the text and listed in References Section 27 of this report.

1.2 Details of Inspection

The authors' mandate was to review and comment on substantive public or private documents and technical information listed in Section 27.0. The mandate also required an on-site inspection and the preparation of this independent Technical Report containing the authors' observations, conclusions, and recommendations. Ms. Carroll conducted a site visit on June 5, 2019.

1.3 Sources of Information

The QP has relied on the data and information provided by Joseph Bardswich of Frisco Gold Corporation ("FGC"), and Doug Irving of Chapman, Wood and Griswold, Inc. for the completion of this report.

In addition, the QP has relied on information and technical documents listed in the References section of this report which are assumed to be accurate and complete in all material aspects. While the authors have carefully reviewed the available information provided, they cannot guarantee its accuracy and completeness.

1.4 Frequently Used Acronyms, Abbreviations, Definitions, and Units of Measure

Unless otherwise indicated, all references to dollars (\$) in this report refer to currency of the United States. Frequently used acronyms and abbreviations are listed below.

AA	atomic absorption spectrometry
Ag	silver
Au	gold
BLM	Bureau of Land Management
CIM	Canadian Institute of Mining, Metallurgy, and Petroleum
core	diamond core drilling method
FA	fire assay
ft	feet
in	inch
kg	kilogram
I	liters
lb	pounds, avoirdupois
m	meters
mi	miles
OZ	ounces, troy (31.10346 g)
oz/t	troy ounce per short ton
ppb	parts per billion
ppm	parts per million
QA/QC	quality assurance and quality control
RC	reverse-circulation drilling method
RQD	rock-quality designation

ton short ton

3 RELIANCE ON OTHER EXPERTS

A qualified person who prepares or supervises the preparation of all or part of a technical report may include a limited disclaimer of responsibility if:

- The qualified person is relying on a report, opinion or statement of another expert who is not a qualified person, or on information provided by the issuer, concerning legal, political, environmental or tax matters relevant to the technical report, and the qualified person identifies
 - 1) the source of the information relied upon, including the date, title, and author of any report, opinion, or statement;
 - 2) the extent of reliance; and
 - 3) the portions of the technical report to which the disclaimer applies.
- 2) The qualified person is relying on a report, opinion or statement of another expert who is not a qualified person, concerning diamond or other gemstone valuations, or the pricing of commodities for which pricing is not publicly available, and the qualified person discloses
 - 2) the date, title and author of the report, opinion or statement;
 - 3) the qualifications of the other expert and why it is reasonable for the qualified person to rely on the other expert;
 - 4) any significant risks associated with the valuation or pricing; and
 - 5) any steps the qualified person took to verify the information provided.

As described in Section 2.4, the author has relied on data and information provided by Joseph Bardswich of Frisco Gold Corporation, Doug Irving of Chapman, Wood and Griswold, Inc. Ed Huskinson who previously worked on the project, confirmed drill information, surface sampling, geologic mapping historical reports and publications. The author believes that it is reasonable to rely on these experts, based on the assumption that the experts have the necessary education, professional designations, and relevant experience on matters relevant to the technical report.

The author is not an expert in legal matters, such as the assessment of the legal validity of mining claims, private lands, mineral rights, and property agreements. Further, while title documents and option agreements were reviewed for this study, this report does not constitute nor is it intended to represent a legal, or any other, opinion as to the validity of the title. The author did not conduct any investigation of the environmental or social-economic issues associated with the Frisco project, and the author is not an expert with respect to these issues.

All projections and opinions in this report have been prepared on the basis of information made available to the author and are subject to uncertainties and contingencies which are difficult to accurately predict. Notwithstanding, the author considers this report to be a true and accurate representation of the preliminary assessment of the mineral potential of the Frisco Project. Although the author has reviewed much of the available data and conducted a site visit, these serve to provide a test of reasonableness, which was passed. Thorough checks to confirm the results of such prior work and reports have not been completed. The authors have no reason to doubt the correctness of such work and reports. Unless otherwise stated the authors have not independently confirmed the accuracy of the data.

This report was prepared for use by Frisco Gold Corporation ("FGC"). It is intended to be read as a whole, and sections or parts thereof should therefore not be read or relied upon out of context.

4 PROPERTY DESCRIPTION AND LOCATION

Property Description and Location - To the extent applicable, describe

(a) the area of the property in hectares or other appropriate units;

(b) the location, reported by an easily recognizable geographic and grid location system;

(c) the type of mineral tenure (claim, license, lease, etc.) and the identifying name or number of each;

(d) the nature and extent of the issuer's title to, or interest in, the property including surface rights, legal access,

the obligations that must be met to retain the property, and the expiration date of claims, licenses, or other property tenure rights;

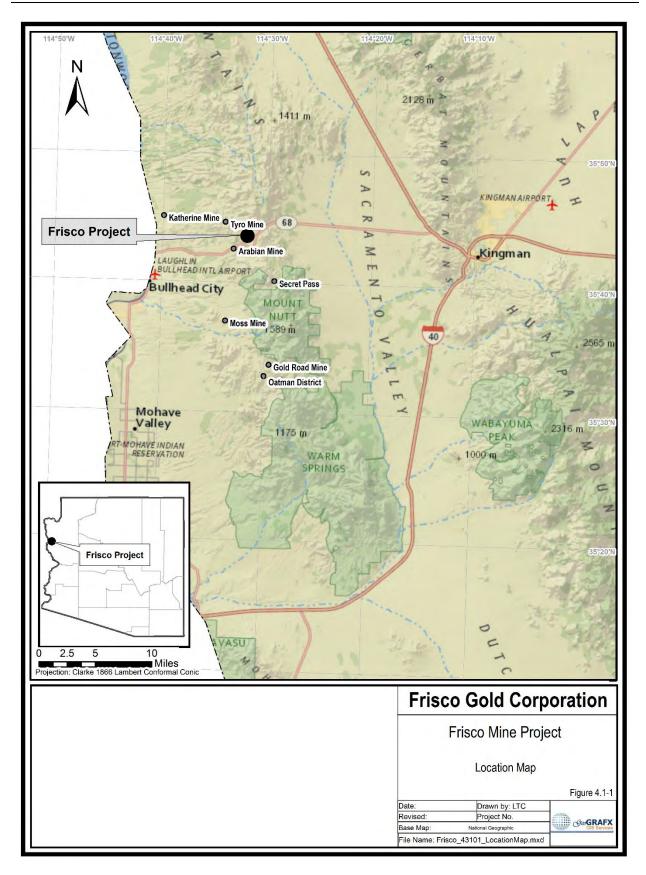
(e) to the extent known, the terms of any royalties, back-in rights, payments, or other agreements and encumbrances to which the property is subject;

(f) To the extent known, all environmental liabilities to which the property is subject;

(g) to the extent known, the permits that must be acquired to conduct the work proposed for the property, and if the permits have been obtained; and

(h) to the extent known, any other significant factors and risks that may affect access, title, or the right or ability to perform work on the property.

4.1 Location


The Frisco Property is located in the Black Mountains, Mohave County, Arizona, 25 mi west of Kingman, Arizona (population ~28,000), 14 miles east of Bullhead City, Arizona, and 90 miles south of Las Vegas, Nevada (Figure 4.1-1) within the San Francisco mining district. The center of previous mining lies at approximately 35.210072 North and 114.415801 West in Sections 9, 15 and 16, Township 21 North, Range 20 West, Gila & Salt River Meridian in the Union Pass 7.5 minute quadrangle.

Historic maps and sections included this report are in a local mine grid (Kessler grid) in feet with origin coordinates of 10,000 East, 10,000 North at the southwest corner of Section 16, T.21 N, R.20 W, Gila and Salt River Meridian. Grid North was established by direct solar observation and elevation control was taken from a USGS Bench Mark located one-quarter mile northeast of the project area. The Bench Mark elevation is 3303 feet (Irving D., GOLD DOME RESOURCE INVENTORY FRISCO PROJECT MOHAVE COUNTY, ARIZONA, 1988). Projection for current maps used in this report is included on the map.

4.2 Land Area, Agreements and Encumbrances

The Frisco property comprises of 11 patented claims in Sections 9, 15 and 16, originally known as the Tragedy Group, and was located about two miles southwest of Union Pass in 1894 (Housholder, 1964), as well as a state mineral lease covering most of the remainder of Section 16.

Access to the patented mining claims and state section is via the existing Arizona Department of Transportation (ADOT) Right of Way off of State Highway 68. The ADOT ROW transects the patented claims and the State section providing excellent access.

4.2.1 Patented Ground

The Frisco property consists of 11 contiguous patented mining claims that occupy approximately 188 acres as recorded with the US General Patents Office and the Mohave County Recorders office. The Patented Claims are listed below in Table 4.2-1 and shown in Figure 4.2-1.

Name	US Mineral Survey Number
Watchman	2569
Dip	2569
Standard	2569
Gold Crown	2569
Site	2569
Protection	2569
Gold Dome	2569
King Edward	2569
Fraction	3135
Uncle Sam Fraction	3961
Picnic	3961

Table 4.2-1 Patented Lode Mining Claims

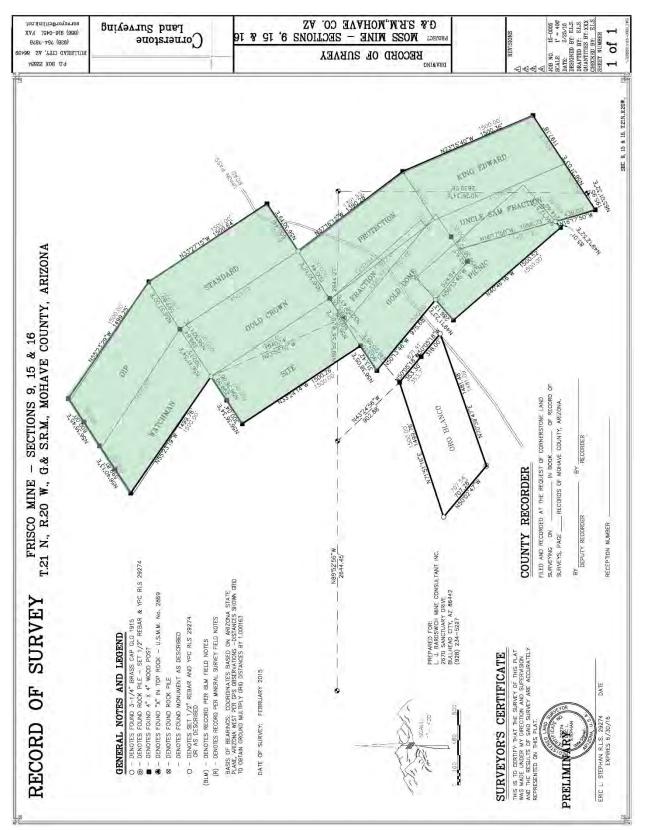


Figure 4-2 Frisco Patented Claims Record of Survey

4.2.2 Arizona State Land Permit

Arizona State Land Mineral Exploration Permit number 08-119994 shown in Figure 4.2-2, is located on State-owned land in section 16, Township 21 North, Range 20 West, Gila and Salt River Baseline and Meridian. The permit is held in the personal name of Randall Huffsmith, an Officer, Director and shareholder of Frisco Gold Corporation. Mr. Huffsmith intends to assign the lease to Frisco Gold Corporation. According to the Arizona State Land Department, the acreage covered by the permit is 537.03 acres. Neither Mr. Huffsmith nor Frisco Gold Corporation have surveyed the property covered by the permit. However, the permit consists of all of Section 16, T21N R20W (as surveyed by the Federal General Land Office) with the exception of the patented claims surveyed by Cornerstone Land Surveying. The Mining Exploration permit term is 5 years until August 22, 2024. The permit entitles the holder to the exclusive right to explore for minerals in the covered lands for the term of the permit.

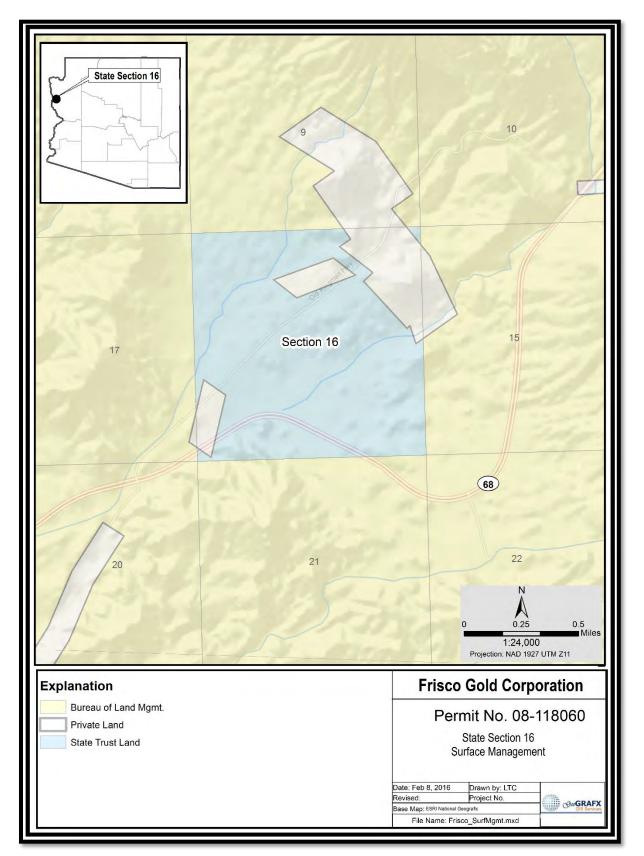


Figure 4-3 State Section 16

4.3 Frisco Land & Mining Company Agreement

The Frisco Land & Mining Company (FLMC) Agreement covers the eleven FLMC patented mining claims referred to in section 4.2-1 above that are held in the name of Frisco Land & Mining. The author has reviewed the current Mining Lease Agreement made between the Company and Frisco Land & Mining, dated June 22, 2018. The lease is subject to monthly payments of \$2000 and royalty is 6 % on first 10,000 ounces and 2% thereafter and 2% on any outside ore processed on the property.

4.4 Water and Surface Rights

The Frisco Project is located in the Lake Mohave Basin. Water is available from the underground workings. A pump in well casing in an old shaft was used to fill an on-site water reservoir during the reconstruction of highway 68. High voltage lines are located less than one mile from the property. Low voltage lines service a housing development 3 miles south of the property.

4.5 Environmental

4.5.1 Environmental Liabilities

The Frisco project area has been the subject of exploration and mining activity since the 1890's and, as such, there are shafts, pits and tunnels on the property, each with its waste rock dump, access trail or road and, in some cases, tailings dumps. It is not known to what extent, if any, that the Company would be responsible for the reclamation of these existing workings. Any excavation representing a safety hazard to field personnel or livestock should be fenced and have the appropriate signage.

There are no known environmental issues that are adversely impacting air, water or soil resources at the site.

4.5.2 Permitting

The Frisco project is located on patented property which avoids the federal permitting and NEPA review.

There is historical disturbance on almost 100% of the property and any properly designed mining operation will result in an improvement in aesthetic and environmental conditions.

The list of permits, licenses, and authorizations for the Frisco Mine is presented in Table 4.5-1. Permits required to mine the Gold Dome deposit were provided by J Bardswich (Bardswich L., Personal Communication - Permitting, 2019). These permits are not meant to be all-inclusive and cover only the major permits required

Permit/Approval	Issuing Authority	Permit Purpose		
Federal Permits, Approvals and Registrations				
Explosives Permit	U.S. Bureau of Alcohol, Tobacco and	Storage and use of explosives. Contractor or company can		
	Firearms	acquire license in 30 to 60 days if required.		
Transportation of Explosives	U.S. Bureau of Alcohol, Tobacco and	Explosive Transportation. Contractor or company can acquire		
	Firearms	license in 30 to 60 days if required.		
Notification of Commencement of	Mine Safety and Health	Mine safety issues, training plan, mine registration. In Hand		
Operations Form 2000-7	Administration	since 2012 updated and amended as required		
Cultural Resources Use Permit	BLM, USFS	Completed under Westland Cultural Resources Inventory		
		Reports		

Table 4.5-1 Potential Permits Required for the Frisco Project

Page: 36

	State Permits, Approvals				
Notice of Startup (30-45 days)	Arizona State Mine Inspector (ASMI)	Required operations registration. In Hand since 2012 updated and amended as required			
Air Quality - Control Permit (4 months)	Arizona Department of Environmental Quality (ADEQ)	Regulates project sources of air emissions. Will require compliance with the new source performance standards. Exemption expected.			
Aquifer Protection Permit APP (6 months – 1 year)	Arizona Department of Environmental Quality (ADEQ) groundwater section	Prevent degradation of ground waters of the state from mining, establishes minimum facility design and containment requirements. Final engineered design and bonding is required before permit is issued.			
AZPDES General Storm Water Permit (402 permit)	Arizona Department of Environmental Quality – surface waters section	General permit for stormwater discharges associated with industrial activity from metals mining activities. Routine submission of Storm Water Pollution Protection Plan with Best Management practices etc.			
208 Consistency Review	Arizona Department of Environmental Quality	Associated with APP - to be done annually after production			
NPDES General Storm Water Permit	Arizona Department of Environmental Quality	Discharge of storm water.			
Notice of Intention to Drill and Abandon an Exploration/Specialty Well	Arizona Department of Water Resources	Bardswich is AZ Licensed Well Driller & can submit applications on an as required basis			
Dry Well Registration	Arizona Department of Environmental Quality	Application on an as required basis by licensed well driller (Bardswich)			
Notice of Intent to Clear Land (20 days)	Arizona Department of Agriculture	File the notice with Dept. of Agriculture 20 days before clearing land			
Arizona Antiquities Act Permit	Arizona State Land Department	completed under Westland Cultural Resources Inventory Reports			
Reclamation Plan	Arizona State Mine Inspector	Reclamation of surface disturbance due to mining and mineral processing includes financial assurance requirements. Require submission of acreages of areas to be disturbed. Mining will occur in previously disturbed areas.			
Above-Ground Fuel Storage Tanks ***Permit may be required within city limits***	Arizona State Mine Inspector (ASMI)	Not within City Limits -regulations for on-site fuel tanks (double walled) will be followed			
Severance Tax	Arizona Department of Revenue	Payments based on production of gold and silver.			

Detail on the permits required are discussed in Section 24 – Other Relevant Data.

5 Access, Climate, Local Resources, Infrastructure and Physiography

Accessibility, Climate, Local Resources, Infrastructure and Physiography – Describe

(a) topography, elevation, and vegetation;

(b) the means of access to the property;

(c) the proximity of the property to a population center, and the nature of transport;

(d) to the extent relevant to the mineral project, the climate and the length of the operating season; and (e) to the extent relevant to the mineral project, the sufficiency of surface rights for mining operations, the availability and sources of power, water, mining personnel, potential tailings storage areas, potential waste disposal areas, heap leach pad areas, and potential processing plant sites.

5.1 Access

The Frisco property is located in the Black Mountains 25 mi due west of Kingman, Arizona. Access the property by taking paved Arizona Highway 93 west of Kingman 2.7 miles to AZ-68 W towards Bullhead City/Laughlin for 18.8 miles; Turn right onto Old Kingman Highway, which is 1.4 miles from this point by gravel and dirt roads to the property. Travel time from Kingman to the property is about 33 minutes. There are a number of 4-wheel drive vehicle accessible roads available to enable sufficient access for early access to the entire Project area.

The closest town to the project area is Bullhead City, Arizona which is 8 miles west of the Frisco Mine. The Frisco Mine is also 8 miles distance from the closest airport or heliport, the Laughlin/Bullhead International Airport.

5.2 Local Resources and Infrastructure

Bullhead City with a population of 45,000 and Kingman with population of 28,000 each have a welldeveloped infrastructure of stores and shops for supplies, restaurants and motels. Both Bullhead City and Kingman, Arizona have a number of construction companies, and Las Vegas, Nevada is 110 miles from the property. Experienced mine workers and technical personnel are locally available as a nearby large copper/moly mine closed recently.

Water is available from the underground workings. A pump in well casing in an old shaft was used to fill an on-site water reservoir during the re-construction of Highway 68. High voltage lines are located less than one mile from the property. Low voltage lines service a housing development 3 miles south of the property.

The patented claims cover approximately 200 acres, within which there are areas potentially of sufficient size for mining infrastructure.

5.3 Climate

The property covers a semi-desert environment typical of much of Arizona. The vegetation is limited to sparse grass, low prickly bushes, sagebrush, and cacti. A few ephemeral springs are located on the property. Average monthly temperatures range from a low of 31°F in January to a high of 96°F in July. The average rainfall is 9.3 inches. Although flash floods caused by thunderstorms in late summer may hamper exploration for brief periods, exploration and mining can be conducted year-round on the property.

Weather forecasting is available for the town of Bullhead City, AZ (ZIP Code: 86429), that is 8 miles from the Frisco Mine site. Over the course of the year, the temperature typically varies from 44°F to 109°F and is rarely below 36°F or above 115°F. Average annual precipitation-rainfall: 6.06 inches.

5.4 Physiography

The topography is moderate to locally rugged, with elevations ranging from 2,600 ft to 4,100 ft above sea level. Elevation is about 3000 feet in the vicinity of the proposed pit. The area is characterized by a series of rugged, rock ridges trending northwest, with intervening valleys of low relief. Gullies are numerous. Rock exposure is abundant along the ridges and prominent hills but is much less in the lower valleys which tend to be overlain by gravel, talus, and shallow soil.

Figure 5-1 View looking north towards the project area from the Right of Way.

6 History

History – To the extent known, describe
(a) the prior ownership of the property and ownership changes;
(b) the type, amount, quantity, and general results of exploration and development work undertaken by any previous owners or operators;
(c) any significant historical mineral resource and mineral reserve estimates in accordance with section 2.4 of the Instrument; and
(d) any production from the property.

Gold deposits occur throughout the Black Mountains of western Mohave County. Gold is the only valuable metal (except a minor amount of associated silver) found in the range; there is a remarkable similarity in the occurrence of gold in the veins. The Black Mountains have historically produced more than 2.5 M oz of gold.

The existing data base consists of geological reports (often only fragments), maps and drill data dating back to the Civil War from various prospectors and mining companies looking for mid-tertiary gold deposits. The data found to date is incomplete and can only be used as it exists. Much of the information on drilling done in the 1970s and early 1980s comes from more recent reports, not original documents. The drill data does not cover all holes drilled, so total footage and other drill data are only approximations. It is possible that other unknown companies have evaluated the area.

6.1 Previous Mining History

Gold was discovered on the Frisco property in 1893, and there has been sporadic production since then. Between 1893 and 1930, approximately 40,000 tons of ore grading 0.40 to 0.60 opt Au were produced from stopes in the main mine workings. Their production costs were 0.20 opt Au. Part of this tonnage was processed on the property and part was milled at the Katherine Mill on the Colorado River, about 7 miles west of the mine.

During the last period of production from 1984 to 1986, approximately 2300 ounces of gold were leached from ore on the property. Production ceased when the price of gold fell below \$300.00 per ounce and the stripping ratio reached 2:1. (Huskinson, 1988)

6.2 Frisco Recent History

Date	Company	Work Performed
1972 - 1982	Red Dog Mining (CF Millar)	Drilling
1980	Red Dog Mining (CF Millar)	Drilling in Section 16
1982	Red Dog Mining (CF Millar)	Drilling
1982	Frisco Land & Mining Co	Drilling
	(Bonelli)	
1983-1985	Frisco Land & Mining Co	Drilling, Mining & stockpiling ore, feasibility,
	(Bonelli)	production
1986	Bonelli	Mine closed

Table 6.2-1 Documented Recent Work on the Frisco Property

1986	Western States Minerals	Evaluation, bulk sample
1987	Gerle Gold Ltd.	Surface, underground sampling, drilling
1988	Gerle Gold Ltd.	Drilled over 100 holes, resource, met testing
1989	Ivernia West/Mohave Mining	Drilled 50 holes, resource, met testing

Summary of Companies involved with the Frisco property and the work carried out is included in this section with additional details listed below.

6.2.1 1972 Red Dog Mining

During 1972, a Canadian company, Red Dog Mining (Chester Millar) negotiated a 10-year metal mining lease on the property with Frisco Land and Mining Co. and conducted test drilling in both the Gold Crown and Gold Dome orebodies. He established a proven reserve of 6000 tons of ore grading 0.13 oz/ton gold in the Gold Crown zone and a probable reserve of 30,000 tons grading .08 in the Gold Dome zone. These were not deemed economic, and again the property lay dormant until the same person, (Millar), with the assistance of Frisco Land and Mining Co., drilled the Gold Dome orebody again in 1982. This drilling proved the 30,000 tons grading .08 oz/ton gold and indicated additional lower grade reserves. These were not deemed economic and Millar dropped his lease on the property (Bonelli D. , 1984).

6.2.2 1980 Red Dog Mining

In 1980, Chester Millar with Red Dog Mining drilled 20 holes in Section 16. Assays were sent to Arizona Testing Laboratories of Phoenix, Arizona for atomic absorption analysis, the other to General Testing Laboratories (GTL) in Vancouver, BC for fire assay.

In 1981, Arizona Department of Mineral Resources (AZDMR) reported that Chester F Millar was drilling at the Frisco Mine. Drill work is being done with an air-trac drill.

6.2.3 1982 - 1986 Frisco Land and Mining Co.

Frisco Land and Mining Co. (FLMC) initiated feasibility work in December of 1982 and test drilled one of the two known ore bodies in April of 1983. Development work commenced in September and the first gold was shipped 11 months later. (1984 Doug Bonelli – AGS field trip). According to AZDMR files, in 1984, FLMC was drilling to locate additional ore. Western Testing Laboratories in Reno was doing their assaying. Production ended in 1986 when the price of gold fell to \$325/oz and the stripping ratio reached 2:1 on the north side of the producing pit in the Gold Dome Zone (Richardson, 1987).

6.2.4 1986 Western States Minerals

In 1986, Arizona Department of Mineral Resources reports that Western States Minerals was reviewing the reserve data and considering a production lease. In January 1987 it was reported that they planned to take an 8,000-pound bulk sample from the Frisco Mine (File

FriscoGoldMohaveT23NR20WSec16_A.pdf downloaded from AZGS). No additional information is available on the status of the bulk sample.

6.2.5 1987 - 1988 Gerle Gold

In 1987, pursuant to a lease agreement with the FLMC, Gerle Gold Ltd, through its wholly owned U.S. subsidiary acquired the right to explore, develop and mine a gold property in Mohave County, Arizona, U.S.A. known as the Frisco Mine (the "Property"). Gerle Gold and Mahogany Minerals Resources Ltd. reached agreement in principle to joint venture the exploration and development of the Property and surrounding area on a 50:50 basis.

6.2.5.1 1987: EXPLORATION WORK COMPLETED (Hrkac, Progress Report on The Frisco Property Joint Venture Mohave County Arizona, 1987)

- 1. Ten 50 lb. bulk samples were taken to confirm reported gold mineralization, to determine the gold particle effect, and to establish assaying and sampling procedures.
- 2. Aerial Photo Survey.
- 3. Preparation of Topographic base maps.
- 4. Transit survey to establish ground control.
- 5. Geological mapping of entire area at a scale of 1 inch = 100 feet.
- 6. Detailed geological mapping of surface and underground mineralized areas.
- 7. A sampling program during which over 800 (5 foot by 5 foot) panel samples were taken both from surface and underground.
- 8. Preparation of detailed sample location and assay maps.
- 9. Ten diamond drill holes to establish geologic control to aid in interpretation of the pending rotary drill sampling program.
- 10. Access roads and drill site preparation in the Granite and Granite Extension area.
- 11. Initiated but not completed: an evaluation of the kaolinite cap and search for industrial uses.
- 12. Initiated but not completed: a metallurgical test to confirm previously reported heap leach characteristics of the Granite Zone mineralization.

6.2.5.2 EXPLORATION WORK COMPLETED: (August 31 to December 31 1987)

- 1. Survey of diamond drill holes.
- 2. Establish Base Line and Grid on Granite to Granite Extension to control reverse circulation drilling.
- 3. Plan of proposed drill program and order of drilling for Granite, Granite Extension, Gold Dome and Gold Crown.
- 4. Continuation of detailed sampling of surface and underground workings west of Little Frisco and NE of Granite Extension.
- 5. Measurement of material left on leach pads at Gold Dome: approx. 23,000 tons.
- 6. Survey and prepare topographic sections at Gold Crown and Gold Dome area.
- 7. Complete sampling of Gold Crown and Gold Dome with mountain climbing crew to sample steep faces, raises, winzes and underground workings.
- 8. Complete drill site preparation for possible additional holes at Granite / Granite Extension.
- 9. Initiate and Complete 10,270 feet of reverse circulation drilling as follows:

Area	No. of Holes	Total Footage
Gold Crown	6	420
Gold Dome	7	1180

Page: 4	13
---------	----

Area	No. of Holes	Total Footage
Granite	25	6095
Granite Extension	14	1850
West Pit South of	4	725
Granite		
	56	10270

- 10. Stake claims in area south of Section 16 to protect new gold find.
- 11. Outright Purchase of Uncle Sam and Picnic patented claims adjoining the patented ground of the Frisco Land and Mining Company.
- 12. Initiate examination of the Arabian Property to evaluate the merits of the proposed joint venture by owner Westar Holdings Corporation.
- 13. Prepare plans and sections of the reverse circulation drill program.
- 14. Plan and lay-out of proposed drilling at Gold Crown, Gold Dome and Granite Zones.
- 15. Start Bottle Roll tests from cuttings at Granite zone.
- 16. Cut samples of plus or minus one-inch material at Gold Crown and Gold Dome for Column Percolation Leach Tests.

6.2.5.3 1988 EXPLORATION WORK COMPLETED (January 1 to March 31, 1988)

1. Completed 6,880 feet of reverse circulation drilling as follows:

Area	No. of Holes	Total Footage
Gold Crown	12	910
Gold Dome	24	3,230
Bandera	2	350
Granite	6	1,320
Granite Extension	1	150
West Pit South of	4	920
Granite		
	49	6,880

- 2. Complete Plane Table Survey of Gold Dome and Gold Crown.
- 3. Prepare plans and sections of drill holes at Gold Dome and Gold Crown.
- 4. Complete Bottle Roll and bucket tests from Gold Crown, Gold Dome and Granite areas.
- 5. Calculation of Resource Inventory at Gold Dome by Doug Irving of Chapman, Wood & Griswold Inc.
- 6. Prepare program of in-fill and extension drilling at Gold Dome.

6.2.6 1989 Ivernia West PLC/Mohave Mining

The following discussion of the Ivernia work on the Frisco property is taken directly from the (Graham, Frisco Agreement, Frisco Property, Mohave County, Arizona, 1989) report.

On December 9, 1988 Ivernia West PLC signed a joint venture agreement covering two adjacent properties, the Frisco and Granite, with Gerle Gold (U.S.) Inc., which was holding both properties under terms of separate, earlier agreements.

Ivernia's plan for the first part of 1989 was, through its newly established subsidiary, Mohave Mining Inc., to drill out an indicated deposit on the Frisco property and to drill test a target on the Granite property.

The 1989 program was designed to confirm reserves remaining in the western deposit and to prove the eastern extension. Thirty-seven holes totaling 4,620 feet. were drilled.

Several metallurgical tests were carried out by Hazen Research, and a summary of these is discussed below.

6.3 Surface Sampling and Trenching

6.3.1 1987 Gerle Gold/Mahogany Minerals Resources

During 1987, a sampling program was completed with over 800 (5 foot by 5 foot) panel samples taken both from surface and underground (Hrkac, Progress Report on The Frisco Property Joint Venture Mohave County Arizona, 1987). On the Frisco patented ground, sampling focused on the Gold Crown levels, the Gold Dome pit and Little Frisco area. On State Section 16, sampling focused on the Granite Extension, Bandera zone, and Granite Pit. The figures that follow show the assay results from the sampling effort.

All samples were assayed for gold and silver at Chemex Labs of Sparks, Nevada. Assay certificates are available for all samples.

6.3.2 1988 Gerle Gold/Mahogany Minerals Resources

During 1988, Gerle Gold continued detailed sampling of surface and underground workings west of Little Frisco and NE of Granite Extension. They completed sampling of Gold Crown and Gold Dome with mountain climbing crew to sample steep faces, raises, winzes and underground workings.

Sample locations for sampling at the Frisco Mine area is shown in Figure 6.3-1. Locations of sample programs in State Section 16 is shown in Figure 6.3-2 Figures 6.3-3 thru 6.3-7 show assay results for sampling programs.

Figure 6-1 Frisco Sample Index Map

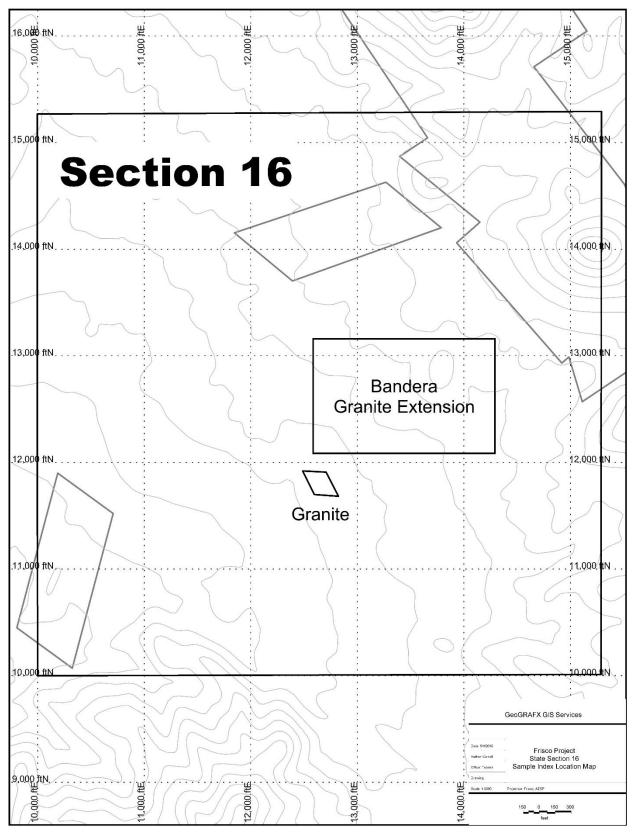


Figure 6-2 Section 16 Sample Index Map

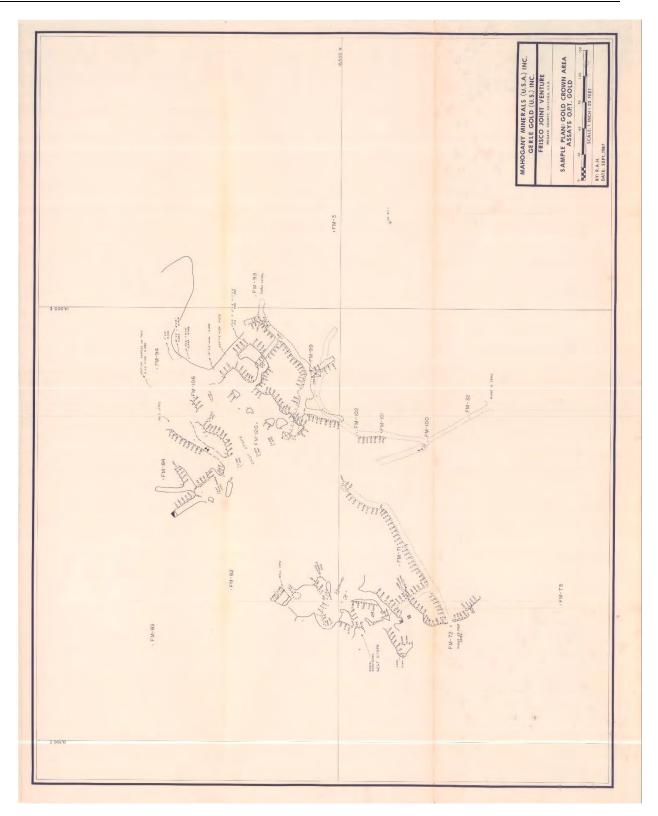


Figure 6-3 Sample Plan: Gold Crown Area, Assays Au oz/t

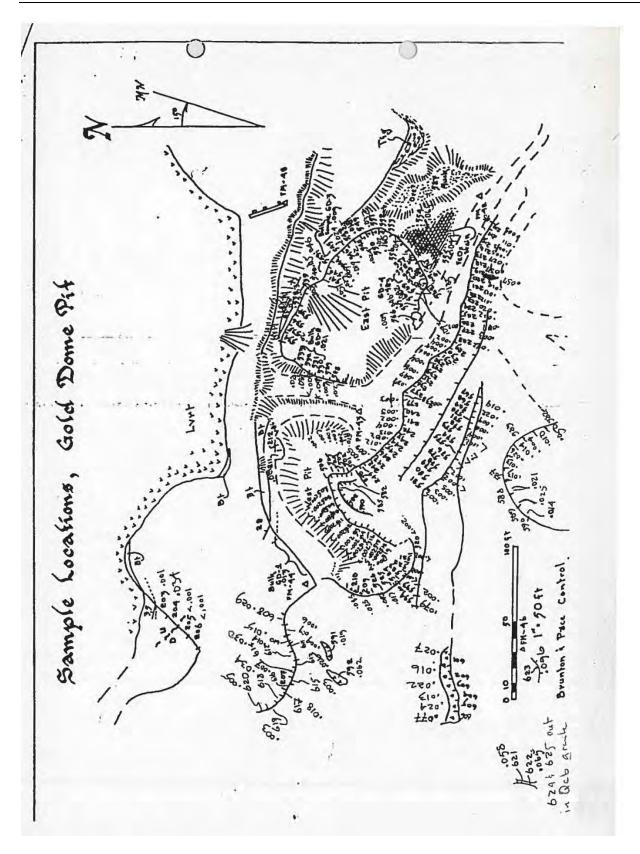
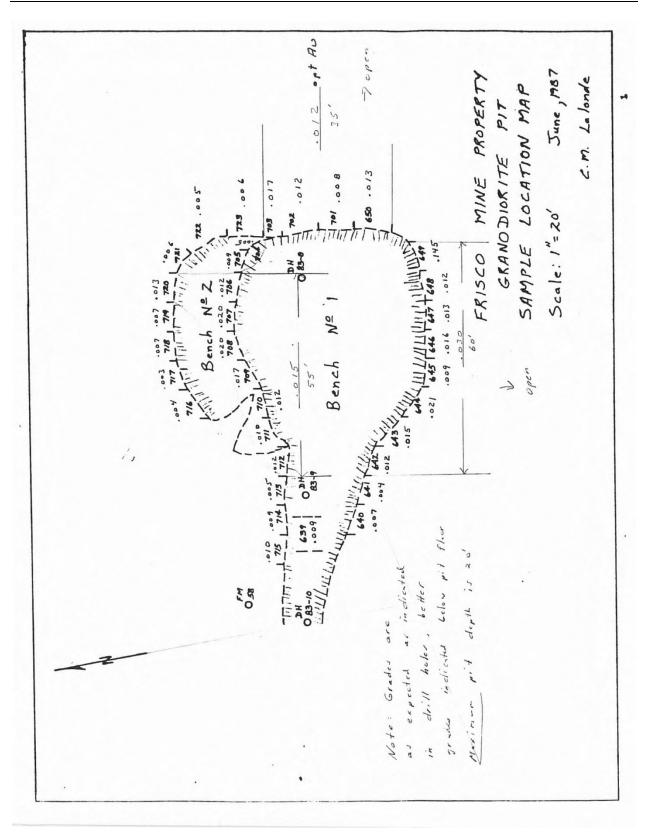



Figure 6-4 Sample Plan: Gold Dome Pit, Assays Au oz/t

Figure 6-5 Sample Plan: Granodiorite Pit, Assays Au oz/t

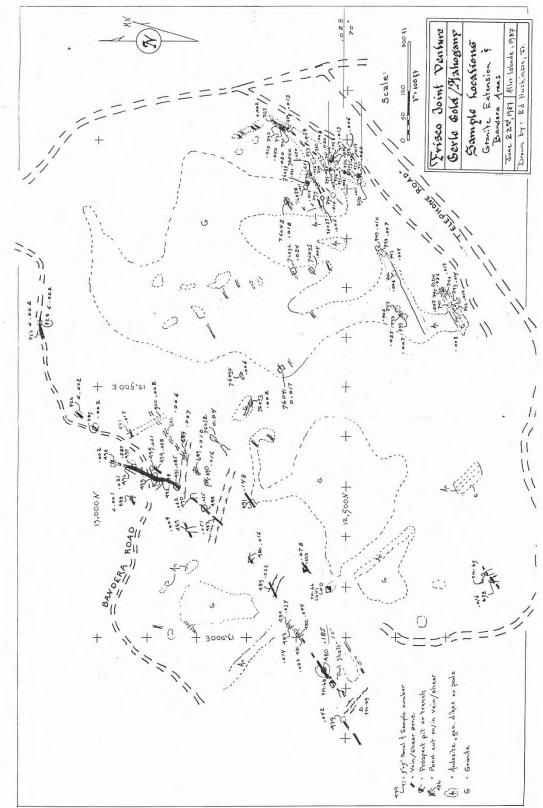


Figure 6-6 Sample Plan: Granite Extension and Bandera Area, Assays Au oz/t

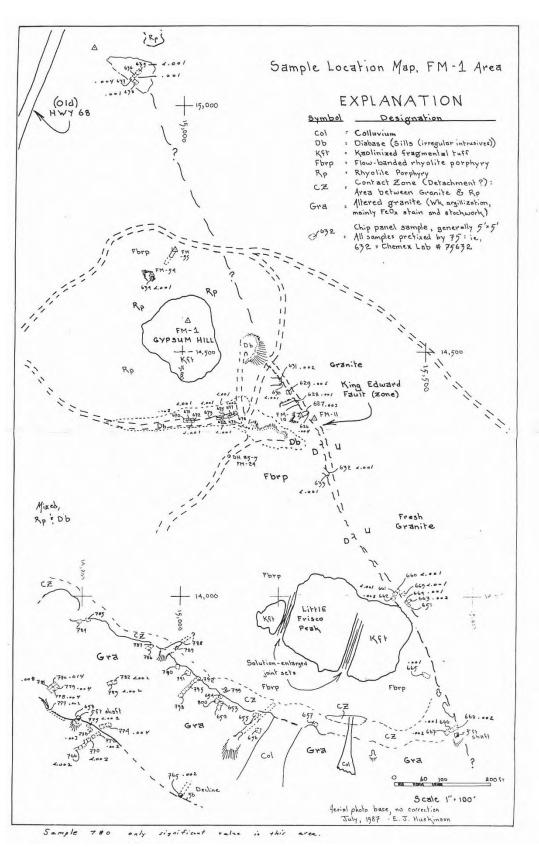
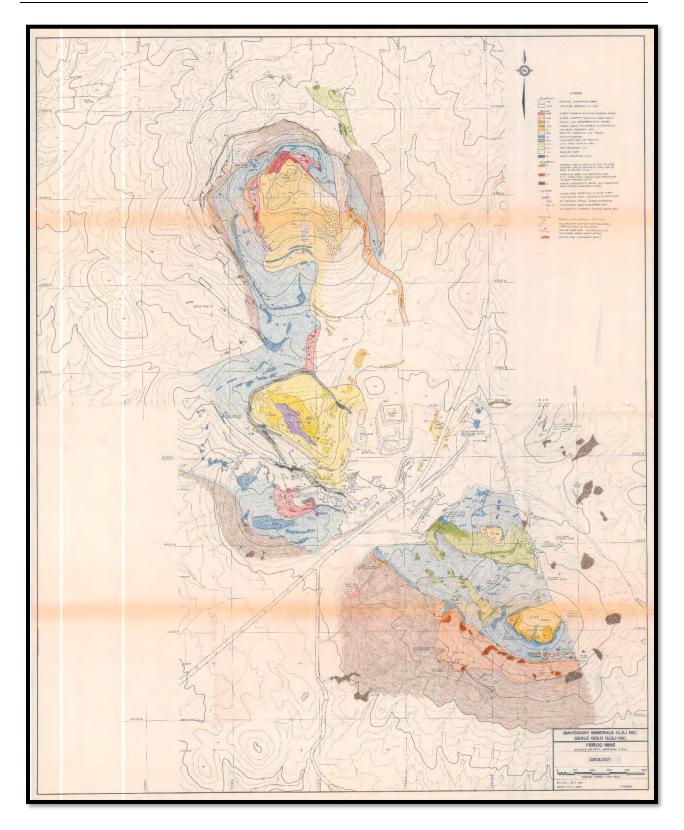



Figure 6-7 Sample Location Map FM-1 Area

6.4 Maps and Drawings

6.4.1 1987 Gerle Gold/Mahogany Minerals Resources

Geologic mapping at a scale of 1 inch = 100 feet was completed for both the Frisco Mine area and the State Section. The geologic map for the Frisco Mine area is included below in Figure 6.4-1 below.

Figure 6-8 Frisco Mine Area Geology Map

The geology map for Granite, Granite Extension & South area is included as Figure 7.4-4.

Detailed geologic maps at a scale of 1 inch = 30 feet of surface and mineralized areas was completed for selected areas including Gold Crown Surface and Levels, Granite Extension and Bandera area, Little Frisco.

6.4.2 1988 Gerle Gold/Mahogany Minerals Resources

Plan drawings of the drilling and pit area were prepared for the Gold Dome Area. A set of north-south vertical sections at 50-foot intervals through the pit area was constructed. Because the trend of the mineralized horizon lies on a general north-south axis, those sections have been termed Longitudinal Sections.

All maps are at a scale of 1 inch = 30 feet. That scale was adopted because many of the old mine drawings were at that scale.

The underground workings, as shown on old maps (1919), were amalgamated into the Kessler grid. All physical evidence of the underground workings has been destroyed. The resulting error in location of the underground workings is believed to be less than 20 feet horizontally and within 5 feet vertically (Irving D., Gold Dome Resource Inventory, 1988).

6.4.3 1989 Mohave Mining Inc

The author has obtained only three maps from the Mohave Mining period. Hole locations for the drill holes prior to 1987 in the Gold Dome West Pit did not reflect the updated positions referred to in Section 6.3.2.

6.5 Surveys

6.5.1 1987 Gerle Gold/Mahogany Minerals Resources

J.M. Kessler, Registered Arizona Land Surveyor and a U.S. Mineral Surveyor, established a survey grid on the property in May of 1987. The southwest corner of Section 16, T.21 N, R.20 W, Gila and Salt River Meridian, was arbitrarily chosen as grid coordinate 10,000 North- 10,000 East. Grid North was established by direct solar observation and elevation control was taken from a USGS Bench Mark located one-quarter mile northeast of the project area. The Bench Mark elevation is 3303 feet (Irving D. , Gold Dome Resource Inventory, 1988).

Many survey control points were established around the property and are designated by the prefix 'FM' on maps. Those points were utilized to:

- 1. Establish a baseline at 14,000 East running from the Gold Dome area north for 2500 feet through the Gold Crown area.
- Survey with a plane table the Gold Dome area at a scale of 1 inch = 30 feet. Drill-hole collars, sample points, physical features, and geologic contacts in and around the Gold Dome pit were surveyed.

6.5.2 1988 Gerle Gold/Mahogany Minerals Resources

The underground workings, as shown on old maps (1919), were amalgamated into the Kessler grid. The resulting error in location of the underground workings is believed to be less than 20 feet horizontally and within 5 feet vertically (Irving D., Gold Dome Resource Inventory, 1988).

The following information is taken directly from the 1988 Gold Dome Resource Inventory (Irving D., Gold Dome Resource Inventory, 1988).

In the area of the Gold Dome Pit, one former drill hole was located, and it was believed to be Hole RC 4 situated to the northeast of the open pit. In addition, a portion of a former drilling grid (1982) was located immediately west of the limits of mining and was reconstructed by brunton and tape survey. That grid has a North 12 1/2° W orientation. A series of 'F' holes lying in the center and western portions of the open pit were laid out on the ground using the reconstructed grid and a drill-hole location map. A number of those locations were surveyed with a plane table and tied into the May 1987 survey grid established by J.M. Kessler.

A later series of holes prefixed by '85' and 'RC' were placed into the Kessler grid on the basis of Hole RC-4 which was tentatively identified as being at the Kessler survey point FM 41. The orientation of those holes was taken from existing maps which show their relationship to the N 12 1/2° W grid.

After plotting both series of holes on the Kessler grid, there is a notable disagreement with a drillhole location map prepared by Douglas T. Bonelli dated Sept. 20, 1986. The 'F' series holes were shifted approximately 75 feet N 40° W in comparison to the 'RC' and '85' series holes as shown on the Bonelli map.

Each of the holes was assigned a pair of Kessler coordinates and the location plotted on a new map at a scale of 1 inch = 30 feet.

Following the publication of the 1988 Gold Dome resource, it was discovered that the drill holes prior to 1987 used in the resource calculation in the west pit were incorrectly located. A later series of holes prefixed by '85' and 'RC' were placed into the Kessler grid on the basis of Hole RC-4 which was tentatively identified as being at the Kessler survey point FM 41. This hole was later identified by D. Bonelli as hole RC-3. Hole locations have to be shifted 50 feet at N77 1/2 E.

To locations used for March 1988 resource estimate:

- 1. Add 11 feet to the North coordinate
- 2. Add 49 feet to the East coordinate

New collar elevations also were established based on hole F65 32 feet southwesterly from FM46. Elevation of that point was found to be 3046. Updated hole locations and elevations was included in information received from D. Irving (Irving D., Gold Dome - Revised Coordinates for F Series Holes, 1988, May 4). Mr. Irving was contacted in on May 5, 2019 and confirmed the modifications (Carroll, Phone conversation with D. Irving, 2019, May 6).

NOTE: Gold Dome hole locations for the F, 85 and RC series holes prior to Gerle Gold maps, cross sections and reports produced in May 1988 were incorrectly located. These errors have been corrected by the author.

These holes were incorrectly located on the Mohave Mining maps that were recovered.

6.6 Drilling

Between 1972 and 1989 over 250 holes were drilled on the Frisco property to explore and define mineralization. Drilling on the Frisco patented ground and State Section 16 was conducted during several periods: 1972 and 1982 by Chester Millar of Vancouver, B.C.; 1983-1985 by Frisco Land and Mining Company (the owner); 1987-1988 by the Joint Venture of Gerle Gold (U.S.) Inc. and Mahogany Minerals Resources (U.S.A.) Inc.; and 1989 drilling by Ivernia West through its newly established subsidiary, Mohave Mining Inc. An inventory of known drilling on the project totals 36,135 feet in 289 holes including 10 core, 131 reverse circulation and 48 air-trac holes. No drilling on the Frisco project area has been undertaken by Frisco Gold Company.

Additional information on the drilling at the Frisco Mine site and Section 16 can be found in Section 10.

Table 6.6-1 Summary of Holes Drilled at Frisc	o projeci			
Company	Date	Number Holes	Feet	Туре
Red Dog Mining (Millar)	1972	8	750	Air-trac?
	1973-	30*	1,842*	Air-trac?
	1975			
	1980	20	3,970*	Air-trac?
	1982	27	1,560	Air-trac?
Frisco Land & Mining Company	1982	10*	390*	Air-trac?
(Bonelli)				
	1983	20	1,715	Air-trac?
	1985	16*	1,385*	Air-trac?
Gerle Gold/Mahogany Minerals JV	1987	10	1,877.8	Core
	1987	56	10,270	Reverse Circ
	1988	49	6,880	Reverse Circ
Mohave Mining	1989	43	5,495	Reverse Circ
TOTAL		289	36,135	

Table 6.6-1 Summary of Holes Drilled at Erisco Project

*missing information

The drill hole inventory for pre 1987 drilling is incomplete. Reports refer to drill holes with no know location, reference is made to drilling a series of holes, where not all holes are recorded, assays are found with holes with no locations. Additional holes with no clear reference to their origin were found

on several of the historic maps. Their locations were digitized into the data set but not included in any resource.

The historic drilling results are described in greater detail in Section 10.0.

6.6.1 1972 Red Dog Mining

In 1972, Red Dog Mining drilled 8 holes totaling 750 feet in the area of the Gold Crown.

Four vertical holes were drilled near the top of the hill and were designated to cut thru the remnant between the stope and outcrop. Two of these on the west side intersected caved ground (or workings) and were unproductive. Two others, about 50 feet apart and on the east side of the hill encountered mineralization.

Four other vertical holes were drilled low down on the southern flank of the hill, designed to intersect the ore bed about 500 feet down-dip from the stope. These penetrated about 130 feet of tuff before entering red granite and were drilled about 50 feet past this contact. Results were negative. One last hole was put down over the site of underground workings reaching out from a shaft near the old highway, where a 60-foot-thick zone of low grade ore is said to have been found. This hole intersected badly broken ground and stopped at 60 feet, showing no values. The shaft is reported to be 300 feet deep and would be a good source of water. (Millar, 1973) Samples were sent to Arizona Testing Laboratory) in Phoenix for analysis. Assay certificates are available for these holes.

6.6.2 1973-1975 Red Dog Mining

The F series air-trac holes F1 thru F24 were drilled in the Gold Crown area. Holes F25 thru F35 were drilled around the Gold Dome. Holes F6,7,8,9,10 were drilled around the old townsite and showed no values down to 170 feet – no assay certificates were found for those holes, just handwritten note on assay certificate. The Gold Crown plan map shown below shows some of the hole locations.

Holes F25 thru F35 were drilled to the west of what is now known as the Gold Dome Pit. Information available for holes F32, 33, 34, 35 includes hole location and assay information included on cross sections. No assay certificates are available for these holes. No location for hole F5 was found in this data set. All samples were assayed for gold at a custom laboratory (Arizona Testing Laboratory) in Phoenix (Sharp, 1974).

6.6.3 1980 Red Dog Mining

In 1980 Red Dog Mining initiated a program of 6-inch diameter percussion drill holes in Section 16, during which 20 holes were sunk to depths of from 200 to 500 feet. Drill cuttings from every 10 feet were collected, 320 lbs., mixed in a cement mixer and sampled. Each sample was split one split going to Arizona Testing Laboratories of Phoenix, Arizona for atomic absorption analysis, the other to General Testing Laboratories (GTL) in Vancouver, BC for fire assay. There is also record of fire assays received from Jacobs Assay Office in Tucson.

Information is incomplete on the 1980s drilling. The hole locations were digitized from existing historic maps; on the map the holes are designation B#. Drill logs are available for holes BB6, BB13, BB14 and

BB15. Assay certificates are available from ATL, GTL and Jacobs for nine holes BB1, BB2, BB4, BB6, BB13-BB17 totaling 3,970 feet.

6.6.4 1982 Red Dog Mining

Twenty-seven F series air-trac holes F51 thru F83 were drilled by Red Dog Mining in February 1982 to confirm the mineralization to the west of the Gold Dome pit. Hole locations were digitized from May 1989 Surface Plan maps and checked against revised coordinates and elevations for 'F' series holes. There is no record of the lab that analyzed the samples. Typed assays were found for sixteen of the F-series holes.

6.6.5 1982-1985 Frisco Land and Mining Company

From 1982 thru 1985 Frisco Land and Mining Company (FLMC) conducted extensive shallow drilling on the both State Section 16 and patented ground to determine the additional shallow reserves. Drilling was not designed to discover reserves deeper than 100 to 150 feet (Bonelli D., Introductory Report on the Frisco Mine, 1987).

Information is incomplete on the drilling done during this time frame by FLMC. Drill hole locations were digitized from several of the historic maps available for the project. Assay results are available for many of the holes.

In 1982 FLMC drilled several holes on State Section 16 totaling 390 feet and sent samples to General Testing Laboratories in Vancouver for analysis. Assay certificates are available with results from 57 samples for holes BB82-1, BB82-2, BB82-11, BB82-3, BB82-4, BB82-5, GG82-6, BB82-7, BB82-8, BB82-9. Hole locations were found for 6 of the holes in this series.

No hole locations were recovered for the FLMC 1983 drilling around the Gold Dome deposit. Typed assay results for Au oz/t are available for holes 83-21 and 81-22. There is no reference to the lab that performed the testing, or the methods used for analysis.

In 1983, FLMC drilled 20 exploration holes on State Section 16 with known footage of 1,715 feet. The samples were sent to Arizona Testing Laboratories in Phoenix for analysis. Assay certificates are available for 175 samples with results for holes BB83-1 thru BB83-20. Hole locations were found for 16 of the holes in this series. No logs were recovered for this drilling.

Information was found for 8 holes totaling 715 feet drilled in 1985 by FLMC drilled in the Gold Dome area. Holes have the designation 85-. Typed Au oz/t assay results for 63 samples are available for holes 85-9 thru 85-15C. There is no reference to the lab that performed the testing, or the methods used for analysis.

The CM series holes, and RC series holes were included on the maps, cross sections, resource and have assay information available for them. CM series – one hole totaling 370 feet. RC series 3 holes totaling 370 feet. No information is available on the company that drilled these holes.

In 1985 FLMC drilled 4 holes in the Little Frisco deposit. Hole locations are shown on the Gerle Gold geology map, with the designation DH5185-. No other information is available on those holes.

6.6.6 1987 Gerle Gold/Mahogany Minerals JV (pre-August 31)

The following discussion of the Gerle Gold Drilling is taken from (Hrkac, Progress Report on the Frisco Property Joint Venture Mohave County Arizona, 1987 September) report with additional information as cited.

Ten core holes were drilled to establish geologic control to aid in interpretation of the pending rotary drill sampling program. Five of the holes were drilled in State Section 16, the remaining five were drilled on Frisco Patented ground.

Drilling was contracted to Muncy Drilling Co. out of Glendale, Arizona. No information is available on the type of equipment used. Samples were submitted to Chemex Labs in Sparks, Nevada for analysis. All samples were analyzed for gold and most samples were analyzed for silver by fire assay methods with an atomic absorption spectroscopy ("AA") finish.

Drill Logs and assay certificates are available for all 1987 core holes. Logs have assay sample numbers included.

Field work was supervised by an experienced drill geologist.

6.6.7 1987 Gerle Gold Drilling (August 31 to December 31)

The following discussion of the August thru December 1987 Gerle Gold Drilling is taken from (Hrkac, Progress Report on the Frisco Property Joint Venture Mohave County Arizona, 1987 December) report with additional information as cited.

Fifty-six reverse circulation holes were drilled to expand the known mineralization and delineate reserves. Forty-three of the holes were drilled in State Section 16, the remaining thirteen were drilled on Frisco Patented ground.

Reverse Circulation drilling was provided by George DeLong Drilling of Winnemucca, Nevada using a truck-mounted drill. Brown Drilling of Kingman, AZ did some rotary drilling in 1987 using a 4.5-in. down-the-hole Mission hammer and a cyclone sample catcher. Samples were split on the rig with a Gilson sample splitter (Irving D., Frisco area drilling, Mohave Co., AZ, 2019).

Assaying for gold and silver for reverse circulation drilling was done by G.D. Resources, Inc., of Sparks, Nevada. No certificates are available for these samples; assay values were hand written in the drill logs and annotated on cross sections.

Drill Logs available for Gold Crown and Section 16 1987 holes. Logs have assay sample numbers included.

6.6.8 1988 Gerle Drilling (Jan 1 to March 31 1988)

The following discussion of the 1988 Gerle Gold Drilling is taken from (Hrkac, Progresss Report on the Frisco Property Joint Venture Mohave County Arizona, 1988 April) report with additional information as cited.

Forty-nine reverse circulation holes were drilled to expand the known mineralization and delineate reserves. Thirteen of the holes were drilled in State Section 16, the remaining thirty-six were drilled on Frisco Patented ground.

Drilling was contracted to Dateline Drilling of Missoula Montana and was done using a crawler-mounted reverse circulation drill (Irving D., Frisco area drilling, Mohave Co., AZ, 2019). The bulk of the reverse circulation drilling was done wet with samples typically taken over 5-foot intervals. Drill hole diameter was 4 1/2 inches. No additional details of type of rig or drilling and sampling methods were not found.

Holes were logged by D. Irving, P Eng. Drill logs were available for the 1988 Gerle Gold/Mahogany Minerals drilling. Hole elevations were entered from logs. TDs entered from both cross sections and logs. Logs have sample numbers included.

Samples from the reverse circulation drilling was sent to GDI for Au, Ag analysis. No certificates are available for these samples; assay values were handwritten in the drill logs and annotated on cross sections.

6.6.9 1989 Mohave Mining Inc.

The following discussion of the Mohave Mining Inc drilling is taken directly from (Graham, Frisco Agreement, Frisco Property, Mohave County, Arizona, 1989) report.

Ivernia's plan for the first part of 1989 was, through its newly established subsidiary, Mohave Mining Inc., to drill out an indicated Gold Dome deposit on the Frisco property and to drill test a target on the Granite property. This was accomplished in a single drill program extending from January 28 through March 6 with 37 holes (GD89-1 thru GD-37) totaling 4620 feet on the Gold Dome deposit, and 6 holes (GE89-1 through GE89-6), totaling 875 feet on the Granite Extension.

Drilling was contracted to Rough Country Drilling Ltd. of Riverton, Wyoming, and was done using a Simco 4000, track mounted, reverse circulation drill and track mounted compressor. Drill hole diameter was 4 3/4 inches. Samples were sent to Skyline Labs in Tucson and a 30-gram portion of each was fire assayed for gold and silver. Systematic check assays were done by Skyline (one check in every ten samples) and some samples were check assayed by Hazen Research in Golden, Colorado. Field work was supervised by a very experienced drill geologist.

No drill logs were available for the Ivernia Drilling. Hole locations were digitized from plan maps, and hole TDs were taken from cross sections. Collar elevation for the holes was not available in the data set. Assay certificates from Skyline are available for all holes. Hole TDs were entered from cross sections. Cannot find hole location for Granite Dome hole GD89-8. Has assays down to 105'.

6.7 Historic Mineral Resource Estimates

All estimates described in this section were prepared prior to establishment of NI 43-101 reporting requirements. There are insufficient details available on the procedures used in these estimates to permit the author to determine if the estimates meet NI 43-101 standards. The classification terminology are presented as described in the original references, but it is not known if they conform to the meanings ascribed to the measured, indicated and inferred mineral resource classifications or proven and probably reserve classifications by the Canadian Institute of Mining, Metallurgy and Petroleum (the CIM Definition Standards). Accordingly, these estimates should not be relied upon, and are presented herein merely as an item of historical interest with respect to the exploration targets at Frisco and should not be construed as being representative of actual mineral resources or mineral reserves (under NI 43-101) present at the Frisco project. Current NI 43-101 mineral resources are discussed in Section 14.0 of this report.

Three historic resource estimates have been calculated and are summarized below. Although Ms. Carroll concludes that these are reasonable assessments of resources, none of these are NI 43-101-compliant. The use of the terms "resources", "reserves" and "indicated" are presented here as they were used in historical documentation. The use of these terms does not imply any compliance with NI 43-101.

There are references in the available literature to other undocumented and unattributed resource estimates prior to 1987, but none of these estimates are disclosed in sufficient detail to document

6.7.1 1987 Gerle Gold Granite Zone Resource

The 1987 drilling in this zone outlined drill indicated reserves of 1 million tons averaging 0. 021 ounces of gold per ton and 0.228 ounces of silver per ton with an average stripping ratio of 0.69:1 (Hrkac, Progresss Report on the Frisco Property Joint Venture Mohave County Arizona, 1988 April).

The following information is taken directly from (Hrkac, Progress Report on the Frisco Property Joint Venture Mohave County Arizona, 1987 December).

 Table 6.7-1 Granite Zone Holes used for 1987 Resource Calculation
 Image: Calculation

No. of Holes drilled	25 Reverse Circulation
	1 Diamond Drill Hole
	4 R.C. Bonelli Holes 1980
	30 Holes
No. of active and the stress is a local state to be a second state it was to	11

No. of mineralization holes within open pit limits = 11

Area of mineralization = $600 \times 200'$ open to extension to NE.

NOTE: 70% of the area of mineralization is defined by only four reverse circulation drill holes whose area of influence had to extend over 200 feet of strike length.

The average grade of the four-hole area was 0.019 opt Au. In contrast to 5 holes whose area of influence extended a maximum of 50 feet and defined an average grade of 0.027 opt Au. If warranted the final Grade calculations will require fill-in drilling at 100-foot centers.

AREA FEET	INTERSECTION	DEFINED BY	TONNAGE	GRADE	GRADE	W/O
	IN FEET	HOLES		opt Au	opt Ag	
120 X 120	45	С	54,000	0.0229	0.05	1.70:1
135 X 120	112	87-7	151,200	0.027	0.124	0.50:1
		BB-6-13-14-15				
145 X 90	60	Н	65,000	0.0235	0.078	1.40:1
200 X 100	70	D	115,000	0.017	0.160	0.92:1
200 X 115	100	I	191,000	0.020	0.345	0.70:1
200 X 120	65	Ν	130,000	0.025	0.087	0.92:1
260 X 70	195	0	295,000	0.0166	0.361	0.24:1
TOTAL			1,001,200	0.0207	0.228	0.69:1

Tonnage and Grade calculations were based on rectangular and triangular areas, and a 0.015 Au. cut-off.

TOTAL GROSS ounces	Au =
--------------------	------

20,000

Without Sorting

Total Tonnage = 1,365,500 tons of Au 0.0176 opt.

Ag 0.199 opt.

TOTAL GROSS ounces

Au = 24,000 Ag = 270,000

* **Note**: W/0 Waste to ore ratio, the waste is in part alluvium.

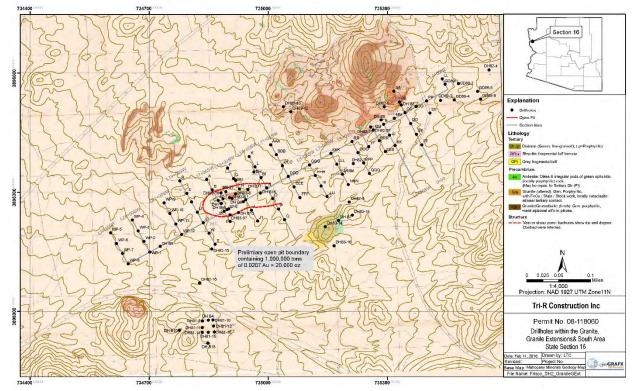


Figure 6-9 Gerle Gold Granite Resource Area

6.7.2 1988 Gerle Gold - Gold Dome Resource

The 1988 Gold Dome resource inventory calculated by Chapman, Woods & Griswold, Inc. was based on drilling and sampling done during several periods: 1972 and 1982 by Red Dog Mining (Chester Millar) of Vancouver, B.C.; 1983-1985 by Frisco Land and Mining Company (Bonelli); 1987-1988 by the Joint Venture of Gerle Gold (U.S.) Inc. and Mahogany Minerals Resources (U.S.A.) Inc.

The resources included in this estimate were generally restricted to mineralization which has an overburden ratio of less than 2.5:1. All quantities developed from pre-1987 drill-hole data were placed in the Inferred category because of the uncertainty of drill-hole locations.

The identified resource base includes 400,000 tons of Indicated plus Inferred material grading 0.060 oz. Au/ton at a cutoff of 0.020 oz/ton. Potential to the northeast is estimated at 115,000 tons grading 0.065 oz. Au/ton. Low-grade material lying in a potential pit path to the east of the existing pit is estimated at 53,000 tons grading 0.016 oz. Au/ton. (Irving D. , Gold Dome Resource Inventory, 1988)

Gold Dome Resource Inventory – Summary (cutoff grade 0.020 oz Au/ton

Indicated Class 1. East End 2. West End	Tons 65,490 1,190	Grade 0.065 0.025
Inferred Class	404 500	0.050
1. East End	104,500	0.069
2. West End	229,790	0.054
Total @ wtd avg	334,290	0.059
Total Indicated + Inferred	440,970	0.060

Following the publication of the 1988 Gold Dome resource, it was discovered that the drill holes prior to 1987 used in the resource calculation were incorrectly located.

The following memo from D. Irving to Gerle Gold Ltd regarding the of the review of the March 1988 resource estimated is discussed in the following memo and quoted verbatim (Irving D., Gold Dome Deposit, Frisco Project Mohave County, Arizona, 1988, May 6).

I have reviewed our March 1988 resource estimate in view of the information obtained from Mr. Doug Bonelli during our meeting at the Gold Dome on April 29, 1988. Doug Bonelli, from his recollections, spotted several old drill-hole locations for us, indicated that the drill grid as marked on the ground at the west end of the pit was in error by about 50 feet, and provided us with relative elevations on the 'F' Series drill holes.

The new information would suggest revisions to the March 1988 resource estimate as follows:

- 1. The 50-foot easterly shift of the 'F' Series holes results in a loss of resources on the west end of the deposit.
- 2. The shifting of holes 85-11, 85-12, and 85-13 to the north beyond the limits of our resource boundary adds tonnage to our estimate.
- 3. The net result of (1) and (2) is essentially no loss or gain in resources.
- Revised collar elevations of the 1F' Series holes raises the original land surface on our drawings and removes some of the estimated resource remaining in the west pit area. An estimated 30,000 tons of material at better than average grade is lost. Material that required stripping will require less stripping.
- 5. Relocation of Holes RC 2, RC 3, and RC 4 results in a gain of some 15,000 tons on the east end of the deposit. The overall grade will drop marginally.
- 6. The net result of the above is an estimated loss of about 15,000 tons and a slight loss in grade. Thus, I would tentatively revise our March 1988 Indicated plus Inferred resource estimate of 400,000 tons grading 0.060 oz. Au per ton to 385,000 tons grading about 0.057 oz. Au per ton at a cutoff grade of 0.020 oz. Au per ton.

NOTE: Gold Dome hole locations for the F, 85 and RC series holes prior to Gerle Gold maps and cross sections produced in May 1988 were incorrectly located. These errors have been corrected by the author.

Corrected hole locations and elevations were included in the data set received from D. Irving in 2016. These corrections were not reflected in the data sets Frisco Gold Corporation received from Bonelli.

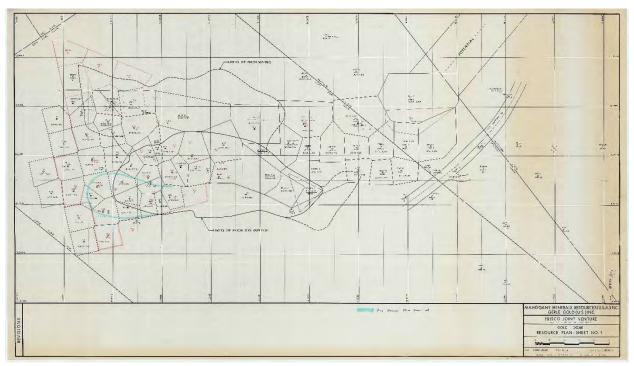


Figure 6-10 Gerle Gold Dome May 1988 Plan Map with Resource Polygons

6.7.3 1989 Mohave Mining Inc. - Gold Dome Ore Reserves

The 1989 program was designed to confirm reserves remaining in the western deposit and to prove the eastern extension. Thirty-seven holes totaling 4,620 ft. were drilled. Expected results were not achieved. Reserves remaining in the western deposit were found to be 116,000 tons grading 0.037 oz. Au/ton and those in the eastern extension were only 79,000 tons grading 0.051 oz. Au/ton. Total reserves are 195,000 tons at a grade of 0.043 oz. Au/ton. The silver content is insignificant. (Graham, Frisco Agreement, Frisco Property, Mohave County, Arizona, 1989). Holes used in the estimation were from the 1987-1988 Gerle Gold and Mohave Mining 1989 drilling.

Drill indicated reserves		
Western Deposit	116,000 tons	0.037 oz./t Au.
Eastern Extension	79,000 tons	0.051 oz./t Au.
TOTAL	195,000 tons	0.043 oz./t Au.

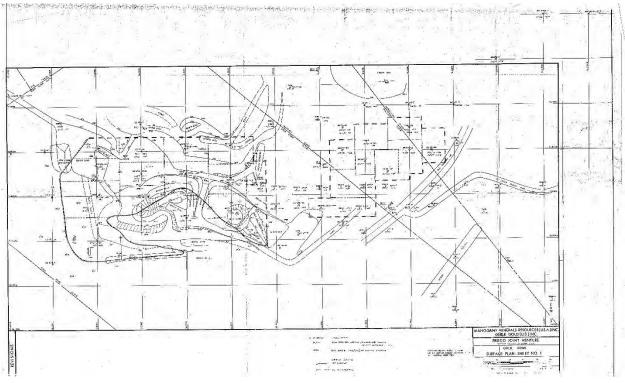


Figure 6-11 Mohave Mining Inc Resource Plan Map

6.8 Metallurgical Sampling

Records from Arizona State Geologic Survey from Doug Bonelli in 1984 report that they are developing a new pit (Gold Dome) west of the mill and pad site. The pit hosts 60,000 tons of 0.08 oz/ton Au using a 0.05 oz/ton Zu cutoff grade. Current dore recovery is 70% Au and 12% Ag (Neimuth, 1985).

The Gold Dome and Gold Crown orebodies have distinctly different metallurgical characteristics, though both are amenable to cyanide and carbon recovery techniques. The gold in the Gold Crown orebody is encapsulated in silica and requires fine crushing or grinding to liberate the gold. Recoveries of 60% at 10 mesh, 70% at 20 mesh, and 90% at 200 mesh are typical. The gold in the Gold Dome ores is much more easily liberated. Recoveries of 60% at 1 inch and 70% at 1/2 inch during a 30-day leach cycle were characteristic of processing the 60,000. tons excavated from the Gold Dome pit. Dore from the Gold Crown ore contained 75% gold whereas dore from the Gold Dome ore contained 55-65% gold; the balance of the metal was silver (Bonelli D. , Introductory Report on the Frisco Mine, 1987).

6.8.1 1987 Gerle Gold Granite Zone – McClelland Labs

Two bulk samples from the Granite Zone, one from Granite Pit and one from the Leach Pad were sent to McClelland Laboratories in Reno Nevada for metallurgical testing. Results are presented below (Macy, 1987).

Bottle roll tests were conducted on two samples (GR-1 and GR-2B) to determine recovery, recovery rate, and reagent requirements. Both samples were readily amenable to direct cyanidation at a nominal 200

mesh feed size. Gold recovery was 92.9 percent for GR-1B, and 92.3 percent for GR-2B. Gold recovery rates were fairly rapid, and the majority of the values were extracted in 48 hours. However, it is not likely recovery rates would be as encouraging if feed size was increased. Cyanide consumption was low for both samples. Lime requirements were high at from 11.2 to 13.6 pounds per ton of ore.

Silver recovery was 73.9 percent for GR-1B and 67.7 percent for GR-2B. Recovery rates were rapid with the majority of the values being extracted in 24 hours.

Agitated cyanidation (bottle roll) tests were conducted on two samples (GR-1B and GR-2B) to determine gold recovery, recovery rate, and reagent requirements.

Overall metallurgical results show that samples GR-1B and GR-2B are readily amenable to direct cyanidation at a nominal 200 mesh feed size. Gold recoveries were 92.9 and 92.3 percent, respectively. The initial extraction rate (to 6 hours) was fairly rapid, recovering 49 percent of the values in this time period. Silver recoveries were also good at 73.9 and 67.7 percent, respectively. The majority of the silver values were extracted in 24 hours.

Cyanide consumption was low for each sample and ranged from 0.13 to 0.42 pounds per ton of ore. Consumption Rates were consistent throughout the leaching cycle for each sample.

Lime requirements were high for both samples at from 11.2 to 13.6 pounds per ton of ore. The majority of lime was added prior to cyanidation, in order to achieve pH 11.0 before starting the leach. Maintaining pH was not difficult even though lime was added. during the leaching cycles.

6.8.2 1988 Gerle Gold Granite Zone - Hawthorn

The following information is taken directly from the 1988 Progress Report on Laboratory Metallurgical Testing on the Frisco Granite Property (Hawthorn, 1988)

Metallurgical testing on mineralized samples from the Frisco property was carried out by Hawthorn in 1988. His report details laboratory cyanidation testing on several samples from the Gold Crown, Gold Dome, and Granite zones. The testing included bottle roll and bucket testing procedures.

Cyanidation tests on the samples listed above have determined the following:

Gold Crown

- Potentially, the Gold Crown zone mineralization will respond well to cyanidation after grinding. Based upon the C-1 sample, a Au recovery of + 90 % is achievable at a 50 % - 200 mesh grind, on a feed which grades .15 oz/t Au.
- 2. Au recovery on the same sample which had been crushed to 3 mesh (1/4 ") was 23%, after 24 hours.

Gold Dome

1. The grind sensitivity of the Gold Dome samples was not consistent.

However, as a general statement, any attempt to heap leach the material will require crushing to at least -1". Even then recoveries may not exceed 50 %on the overall zone.

2. Laboratory testing, by the writer, has not indicated that the reported 60 - 70 % Au recovery is regularly achievable.

However, the wide variability of the results, demonstrates the lack of homogeneity in the deposit.

I do not have any reason to disbelieve the reported results, but on the samples which I have tested, I have not obtained those high recoveries, and I cannot project these results, except with fine crushing.

3. The testing indicated that leaching is completed, on coarse rock, within 5 days.

Granite

1. An 11% Au recovery, was achieved in 8 days on a - 6 " sample, which was bucket leached.

The tailing screen analysis suggests that crushing will significantly increase the Au recovery, to perhaps 65 %, based upon a .027 oz/t feed grade.

Some of the material was sufficiently high grade to support the higher cost of conventional dynamic cyanidation, but the majority, at < .06 oz/t Au can only support the lower cost of heap leaching.

The results to date indicate that, after fine crushing, and agglomeration (?), a recovery of 65% can be achieved on some of the material from some of the deposits.

6.8.3 1989 - Mohave Mining Inc. - Hazen Research

Several metallurgical tests were carried out by Hazen Research. Of most importance are two cyanide column leach tests on samples from the pit bottom. These indicate recoveries after 50 days of 68% and 75% of the gold from material crushed to less than 5/8 inch and less than 3/8 inch respectively. Agitation cyanide leach tests on -200 mesh material showed a gold dissolution of 96% in 12 hours. (Graham, Frisco Agreement, Frisco Property, Mohave County, Arizona, 1989)

6.9 Mining and Engineering

In the period 1984-1986, the owners operated a small open-pit and heap-leach which reportedly recovered 2300 ounces of gold from 66,000 tons of ore grading 0.058 oz. Au per ton. Almost all of that material was produced from the Gold Dome deposit.

During operation, Frisco Land and Mining Company developed an extensive infrastructure at the property. There are 2 leach pads with plumbing to 3 ponds (pregnant, barren, overflow) lined with plastic. This system is capable of processing 9,000 tons per month. Tailings (1" and 1/2" crushed ore) were used to fill and level, resulting in the formation of a large level area suitable for the installation and storage crushing and earthmoving machinery. In addition, there are 2 water wells plumbed to a 150,000-gallon steel tank. One well delivers 45 GPH from about 100 feet and the other delivers up to 110 GPM from 80 feet. Roads are present throughout the property, and most orebodies and mineralized

zones can be drill tested without extensive additional work (Bonelli D., Introductory Report on the Frisco Mine, 1987).

The following discussion of production at Frisco is taken from (Bonelli D., 1984).

Ore is drilled, blasted, and hauled (if necessary) to the primary crushing site. The material is crushed to minus one inch in two stages of crushing and stacked onto a stockpile at a rate of 130TPH. This material is fed into the agglomerating circuit where it is rolled in a drum with lime and a cyanide solution prior to loading onto a pad.

Two leach pads are used, each capable of holding four to six thousand tons of material. One pad is loaded and leached while the other is flushed with fresh water and stripped.

Pregnant solutions are collected in a pond and then pumped thru a series of four carbon columns to collect the gold. This barren solution is collected in another pond prior to reapplication to the heap. The carbon columns are periodically removed from the circuit and the carbon is stripped of the gold it contains.

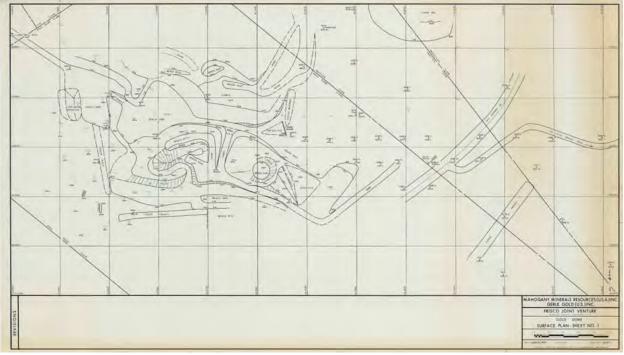


Figure 6.9-1 shows the workings at Gold Dome deposit.

Figure 6-12 Gold Dome Surface Plan 1988

7 GEOLOGIC SETTING AND MINERALIZATION

Geological Setting and Mineralization – Describe

- A) the regional, local and property geology; and
- B) the significant mineralized zones encountered on the property, including a summary of the surrounding rock types, relevant geological controls, and the length, width, depth and continuity of the mineralization, together with a description of the type, character and distribution of the mineralization.

7.1 Regional Geology

The following discussion of the regional geologic setting of the Black Mountains is taken largely from (Westervelt, 1987) with additional information as cited.

7.1.1 Geology

The dominant rocks are Precambrian granitic to mafic intrusive rocks and metamorphic rocks, which are overlain by Tertiary andesitic to rhyolitic flows, tuffs, and volcaniclastic sedimentary rocks. Rhyolite dikes, sills, and plugs are common and cut both the basement rocks and the overlying Tertiary rocks (Fig 7.1-1).

The main structural feature in the region is an imbricated system of shallow to steeply dipping faults trending north-northwest. This system has been traced to the north from the Oatman District, through the Secret Pass – Frisco Mine area, into the Van Deemen area some 40 mi to the north. Two major, generally low-angle, detachment fault structures have been identified over this distance – the Union Pass fault system and the Frisco Mine fault system. Both fault systems are sinuous with variable dips and splays, and both are locally offset by later structures. Numerous gold showings and prospects are directly associated with the Union Pass and Frisco Mine faults, and some have reported limited production. The Oatman District, twelve miles south of the Frisco Project, has produced over two million ounces of gold (Durning, 1984).

7.1.2 Mineralization

The deposits of the Black Mountains occur chiefly in Tertiary volcanic rocks. Gold is the only valuable metal (except a minor amonnt of associated silver) found in the range; there is a remarkable similarity in the occurrence of gold in the veins (Gardner, 1936). Their gangue is chiefly calcite, calcite replaced by quartz and adularia; they are deeply oxidized and, as a rule, contain no sulphides; and their values are almost exclusively gold, there being usually no base metals present.

7.1.3 Past Development

The Black Mountains are the most prolific gold producing range in Arizona having a total past production in excess of 2.5 million ounces. Most past production has come from mid-Tertiary high-angle epithermal quartz-calcite-adularia veins hosted by Tertiary volcanic and Precambrian granitic and gneissic rocks. However, during this same mineralizing epoch low-angle detachment faults were active along the entire length of the range. Detachment fault breccias and associated lystric normal faults are now recognized as host to several minor gold deposits in the Black Mountains (Figure 7.1-1). The Black Mountain detachment fault rings the range at the pediment bedrock interface (Fisher-Watt Mining Co., Inc, November 15, 1985). The following is from (Gardner, 1936). Several periods of activity have occurred in the range with relatively quiet periods between. The first mining was in the early sixties, when some rich surface deposits were found. At the beginning of the century, work was being done throughout the range at a large number of deposits. The greatest activity in the Oatman district was between 1917 and 1924 during the life of the United Eastern, from which \$14,000,000 in gold and siver was produced. The so-called "Oatman boom" occurred at this time, and considerable unproductive work woas done on wildcat promotions. After the boom, production fell off gradually, at the eginning of 1933 the area outside of Oatman, where one small mine was operating, was virtually deserted except for desultory work by a few leassees.

Interest was revived in the range when the higher price of gold was established. The Tom Reed and Katherine mills were again put in comission and began taking custom ore; before long more custom ore was being offered than could be accepted. This condition persisted up to the time of writing (spring, 1936). The Tom Reed, Gold Roads, an dother old mines were reopened. Important new ore bodies were discovered in the Tyro, Ruth-Rattan, Protland, Minnie, and other mines. One new mill, the Pilgrim, was built in 1934. This was at an old mine with negligible previous production. The total production to the end of 1933 was \$37,000,000 in gold and over \$600,000 in silver.

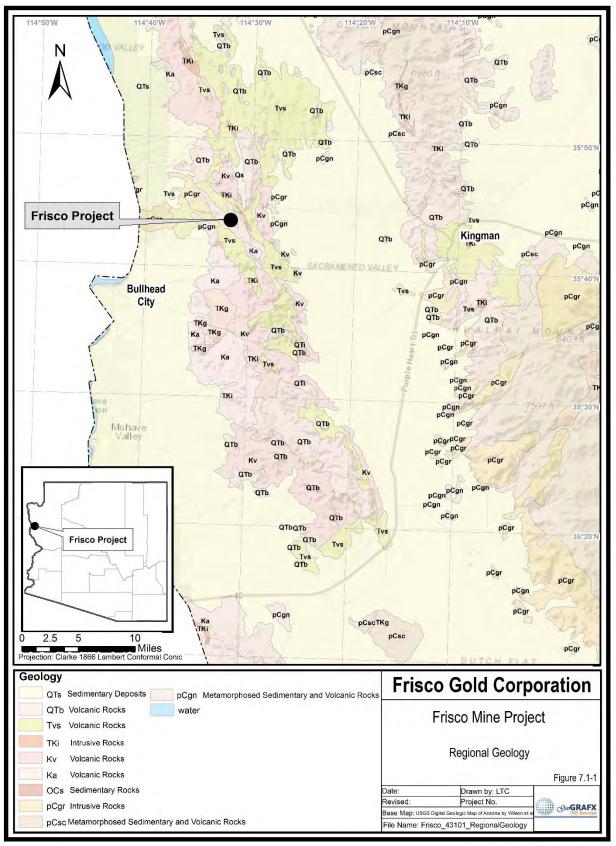


Figure 7-1 Regional Geology Map

7.2 District Geology

Local names were at one time applied to parts of the mining district of the Black Mountains, such as Gold Road District, Katherine District, Union Pass District, and others. These localities comprise what is officially the San Francisco Mining District. The following information of the San Francisco district geologic setting is limited to the Union Pass Quadrangle in the Black Mountains and is shown in Figure 7.2-1.

The following discussion of the District geologic setting is taken largely from (Housholder, 1964) report with additional information as cited.

7.2.1 Geology

For some 2 miles west of Union Pass, the Black Mountains are made up of the Oatman type of Tertiary volcanic rocks, carved into steep, sharply dissected slopes. Farther west, the prevailing rocks consist of a basement of sheared, coarse-grained granite and gneiss of probable pre-Cambrian age, locally overlain by foothill remnants of the volcanic series and intruded by rhyolitic dikes (see Figure 7.2-1). (Wilson, 1967).

7.2.2 Mineralization

As indicated by Figure 7.2-1, the principal veins of the Union Pass district occur within an eastwardtrending belt generally less than 2 miles wide. In form, mineralogy, stages of deposition, wall-rock alteration, and origin, they are generally similar to the veins of the Oatman district (Wilson, 1967), described in Section 23.

The Union Pass section veins are mineralogically of simple character, consisting mainly of quartz, calcite, and adularia, associated, in the ore shoots with free gold. As a rule, only quartz and calcite are recognizable with the naked eye. The adularia occurs generally in microscopic crystals, and gold is visible only in unusually rich ore. Fluorite occurs in some of the veins but apparently is not particularly significant as to the presence of gold. The proportion of quartz and calcite in the veins varies widely. A wide range may also be found in different parts of the same vein. As a rule, the gold is found where both minerals are present. Much of the quartz that was deposited nearly or contemporaneously with the gold was clearly replaced older calcite. Some of it moreover, appears to have crystallized simultaneously with calcite. This indicates at least three generations of calcite. The conclusion reached is that during the middle stage of vein formation quartz and calcite were repeatedly deposited alternately and that during this period also were at times deposited simultaneously and some calcite was replaced by quartz. Deposition of calcite has probably continued up to the present time. The cause of the tint and lustre accompanying the gold bearing quartz has not yet been ascertained. The granite, a course porphyritic rock, is sheeted and made schistose along the zone of contact at the Frisco mine.

In the Union Pass -section the ores are believed to have been deposited by hot, ascending solutions which originated at considerable depths below the surface. The exact sources of the solutions, however, cannot be determined. They were, however, derived from a cooling magma. The more volatile constituents, including water vapor, were concentrated by differentiation upward through cracks in the earth's crust.

Veins in the Oatman and Katherine Section. and Union Pass frequently branch and intersect; yet no ore shoots have been found at such intersections which are ordinarily favorable places to search for ore. Although no ore has been found at such intersections in the past, it does not mean that ore will be found under such conditions in the future.

Ore has been found in various kinds of rocks. In the Union Pass Section, primary ore shoots occur .in latite at the Gold Road and Gold Ore Mines. and in andesite along the Tom Reed fracture. A small ore shoot at the Sunnyside Mine on the 500 ft. level had tracyte for the footwall. The very rich ore shoot worked in the early days at the Moss Mine was in quartz monzonite.

The chemical composition of the rock, therefore, does not appear to have been an important factor inthe localization of the ore shoots, and would be hardly expected to be of prime importance unless the ore bodies were formed largely by a process of replacement. A physical property of the various rocks, such as their ability to shatter and remain open rather than to form a tight gauge, may have contributed to the localization of the ore shoots, where they are now- found. As was stated previously, a reopening of the veins by later faulting was essential for the introduction of the later and richer stages of vein formation.

Known deposits or prospects in the immediate vicinity of the Frisco, that are not part of the Frisco Project are included in Section 23 – Adjacent Properties. Their locations are shown in Figure 4.1-1.



Figure 7-2 District Geology

7.3 Local Property Geology and Mineralization

The following discussion of the Frisco geology and mineralization is taken largely from (Huskinson, 1988) with additional information as cited.

The Frisco mine is on the west flank of the Black Mountains, near the north end of the Union Pass Mining District. The rocks comprise a closely related series of volcanic flows, with associated tuffs, which rest on Precambrian crystalline rocks, chiefly granite and gneiss. The contact between these units appears to be a low-angle (less than 45 degree dip) normal fault, the Black Mountains Detachment Fault (BMDF, Fig. 7.3-1).

There are two ore bodies, both hosted in volcanic rocks: the Gold Crown and the Gold Dome. In addition, exploration is on-going at the Granite and Granite Extension areas to the southwest where gold mineralization occurs in Precambrian rocks. The gold to silver ratio is 1:1.

7.3.1 Geology

A) Lower Plate

The lower-plate rocks below the detachment consist of Precambrian gneiss, porphyritic granite and granodiorite, with local zones of metavolcanics. At the Granite and Granite Extension areas, the gneiss is partly mylonitized and has also been brecciated.

B) Contact Zone

No evidence of a detachment rubble zone or microbreccia has been found at the Frisco. The contact zone is a mylonite consisting of crushed and sheared gneiss of which only isolated vestiges of primary feldspars and biotite survive. Much of the biotite and plagioclase has been replaced by a fine scaly paste of sericite that is clouded with supergene hematite. Sericite inherited from former feldspars also dusts quartz grain boundaries throughout the fabric, and sericite has been dragged as foliae onto slip planes. Silicification is variable: in places it is weak, in others, the rocks are almost jasperoidal. The contact zone varies in thickness from Jess than 1 foot to over forty feet.

C) Upper Plate

The upper-plate rocks are all Tertiary volcanics, consisting of rhyolite flows, vitrophyres and tuffs, overlain by a sequence of andesite, latite and basalt flows

Rhyolite porphyry

A rhyolite porphyry overlies the granitic basement Varying from 70 feet to 160 feet thick, the unit is characterized by numerous quartz eyes, and textures suggest emplacement as a thick flow or sill. The rhyolite unit is locally flow banded.

Quartz-Cemented Rhyolite Breccia

This is the primary ore horizon at the Gold Crown, where the bulk of the production was obtained, largely by stoping. It is a 30- to 40-foot zone consisting of banded vein matter that has formed by replacement of a rhyolite vitrophyre. Rhyolite relics are typically slab-like domains replaced extensively by dense cherty quartz in which small adularia euhedra are dispersed. Coarse cockaded epithermal quartz of prismatic habit is anchored on the rhyolite relics. This material grades from 0.009 opt Au to as much as 0.372 opt Au. All of the ore is silica-encapsulated and must be milled.

Kaolinized Fragmental Tuff

This distinct white unit overlies the ore zone and is thought to represent an alteration cap over the ore body. It is composed of kaolinite (hydrous alumino-silicate clay) with 5 to 10% lithic fragments. Excess silica is in the form of alpha quartz and alpha cristobalite. Because this material will have to be stripped *off* to open pit the underlying ore, the company is researching uses for it, such as furnace lining, smelter flux, or roofing material.

Basalt Fragment Breccia

At the Gold Dome pit, the ore is easily leached. The last production from the mine (about ~300 ounces of gold) was realized from a 30-foot breccia of basalt fragments of uncertain origin that is cemented by quartz and carbonate. Grades in this unit range from 0.009 to 0.475 opt Au, and average 0.068 opt Au. This zone is overlain by a basic vitric tuff that was probably deposited directly in a subaqueous environment. The abstruse relationship between this section and the section at the Gold Crown is under investigation.

7.3.2 Structure

The most prominent structural feature in the area is the Black Mountains detachment fault, a low angle (less than 45 degrees) normal fault developed in response to extensional stresses in mid-Tertiary time. The BMDF appears to extend for about 25 miles, first cropping out about three miles south of the Frisco property, and can be traced on through the Van Deemen Mine (about 20 miles north). The fault is characterized by a cataclastic breccia of variable degree and thickness, and it generally forms the boundary between lower-plate crystalline rocks and upper-plate Tertiary Volcanic rocks. There are several mines and small prospects associated with the fault. Besides the Black Mountains detachment fault, the most prominent structure in the mine area is the King Edward fault. This NNW-trending high-angle normal fault has dropped the volcanic rocks of the Frisco area down, preserving the ore zone(s) and overlying altered tuffs (Fig.7.3-1).

The lower-plate rocks display a N 15-20 W fabric, as evidenced by numerous dikes and lineations of that orientation.

There are several NE-trending high-angle structures in the area. The Arabian zone, one-mile SW, strikes right toward the Frisco; however, there are no outcrops which can be traced directly onto the property from the Arabian. *A* set of late Tertiary NE faults cut the stratigraphy, and these account for the differences in dip between the Gold Crown, Little Frisco, and South Frisco rocks (Fig. 7.3-1).

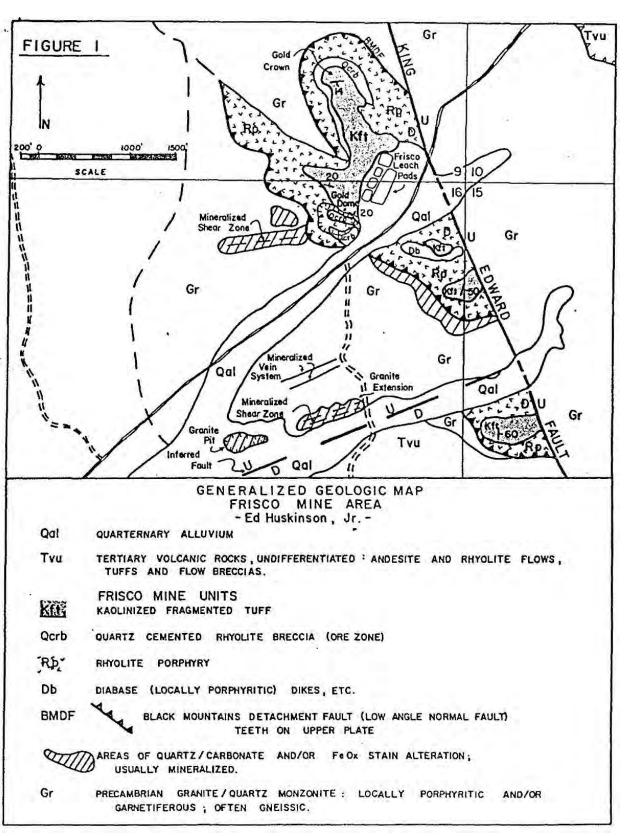


Figure 7-3 Local Geology Map

7.3.3 Alteration and Mineralization

Mineralization in the upper plate volcanic rocks is contained in rhyolite vitrophyres and breccias, and probably reflects ground preparation resulting from the reaction of these brittle units to extensional stresses generated in Mid- Tertiary time. The source of the mineralizing solutions is uncertain but is thought to lie to the southwest. The ore fluids probably traveled along the Arabian structure which trends onto the property from that direction.

Mineralization in the lower plate granites appears to be restricted to a wide, high-angle shear zone, probably a splay off the Arabian. This zone may prove to hold the bulk of the mineralization for the property.

The Kaolinization displayed in the fragmental tuff unit is the most obvious alteration, and it directly overlies the Gold Crown ore body. It is thickest ()50') and most intense over the richest ore zones and is always barren.

At the Gold Dome, the rocks overlying the ore are zeolitized and kaolinized vitric tuffs in which the glass did not devitrify but altered directly to a complex mixture of kaolinite and zeolites (erionite and mordenite). These rocks are also silicified, forming what has been termed a silicified "hogsback" of hydrothermal breccia. This zone has weakly anomalous Au (0.009 to 0.01 opt) and is being explored at this time.

Quartz and coarse carbonate fill interstices between relic fragments while pyrite cubes, now oxidized to goethite, are disseminated on matrix quartz grain boundaries. This material grades from 0.02 opt to 0.145 opt Au.

The gold associated with the quartz-cemented rhyolite breccia is silica-encapsulated and must be milled for extraction. The gold at the Gold Dome and granite areas can be leached easily. Extraction rates are fairly rapid - 75 to 85% in 48 hours, with low cyanide consumption. Lime consumption is a little high at 11 to 13 lbs per ton of ore.

7.4 Property Deposits and Exploration Targets

7.4.1 Gold Dome

The following discussion of the Gold Dome geology is taken largely from (Irving D., Gold Dome Resource Inventory, 1988) with additional information as cited.

Figure 7-4 Gold Dome Local Geology Map

Gold mineralization of economic interest in the Gold Dome deposit is contained in a brecciated and silicified zone within a flowbanded to porphyritic rhyolite of late-Tertiary age. The rhyolite is overlain by a kaolinized tuffaceous unit which is locally brecciated and silicified but unmineralized. A water-lain soft black tuffaceous basaltic unit up to 50 feet thick separates the kaolinized tuff from the rhyolite over an area of about 8 acres immediately north of the Gold Dome pit. The basaltic unit thins very rapidly and can disappear within 100 feet. Occasional premineral andesite and/or diabase dykes intrude the rhyolite. Underlying the entire area is a medium-to coarse-grained propylitically altered Precambrian granitic to locally gneissic rock.

A regional detachment fault, the Union Pass Fault, dips southerly at about 20° and separates Precambrian rocks from Tertiary volcanics. Late Tertiary Basin and Range block faulting has resulted in vertical displacements of hundreds of feet. About 1000 feet east of the Gold Dome pit, the King Edward fault, a major N 20°W structure in the district, places Precambrian granite on the east against Tertiary volcanics on the west. Another fault, known as the Frisco fault at the Gold Dome property, strikes easterly through the pit and dips about 45° northerly. Vertical displacement on the Frisco fault may be in the order of 30 to 40 feet. Within the pit, the fault is observed as a 30-foot-wide zone of gouge and brecciated rock. In addition, numerous post-mineral faults are observed in the pit and severely complicate the geometry of the gold bearing zone.

The relationship of regional faulting such as the detachment fault and the King Edward fault to gold mineralization is not understood.

However, in the Secret Pass District about 5 miles to the southwest, gold ore was mined from the Frisco Mine Fault which is the same structure as the King Edward fault. If the King Edward fault is important, exploration of the Gold Dome deposit northeastwards to the fault could be rewarding.

Immediately east of the Gold Dome pit, the mineralized zone has been partially to completely eroded and then covered with recent gravels to depths up to 40 feet.

The zone of mineralization appears to be generally conformable to the rock units, dipping northerly or northeasterly at about 25° in the Gold Dome pit and then flattening with a dip reversal as one proceeds northward, all within a distance of 500 to 700 feet. The zone thickness can vary from a few feet to 60 feet.

The mineralized zone is possibly a hydrothermal breccia which has been recemented and silicified with several stages of silica. As observed in the pit, the mineralized zone consists of a breccia of rhyolite and andesite filled with silica, some calcite, and iron and manganese oxides. The zone is vuggy, exhibiting late stage crystalline quartz which is occasionally amethystine. Although brecciation and silicification are important to the presence of gold, the quantity of free silica is not a guide to the grade of gold.

Gold values within the zone range from less than 0.001 oz. per ton to more than 1.0 oz. per ton. Silver values are generally about equal to gold values. Base metals are absent.

The distribution of gold values is typically erratic with high-grade values (+0.20 oz. per ton) occurring next to material grading 0.02 oz. per ton or less. The gold is finely disseminated and believed to occur in micron-sized particles. Free gold has not been observed.

7.4.2 Gold Crown

The Gold Crown orebody is hosted in the rhyolite porphyry and consists of a sheet of chalcedonic breccia at least 200 feet long, 400 feet wide, and up to 40 feet thick. This orebody is penetrated by 6 drill holes and is extensively exposed at the surface and in stopes. This sheet strikes northeast and dips gently to the southeast. The tuff that overlies this orebody is altered to quartz and kaolinite and may have value as an industrial material (Appendix B). In the Gold Crown body, this ore will lie down-dip of the known ore along a strike length of 400 feet (drawing 6). There is little possibility of extending the strike length because the vein is terminated on hill slopes (Bonelli D. , Introductory Report on the Frisco Mine, 1987).

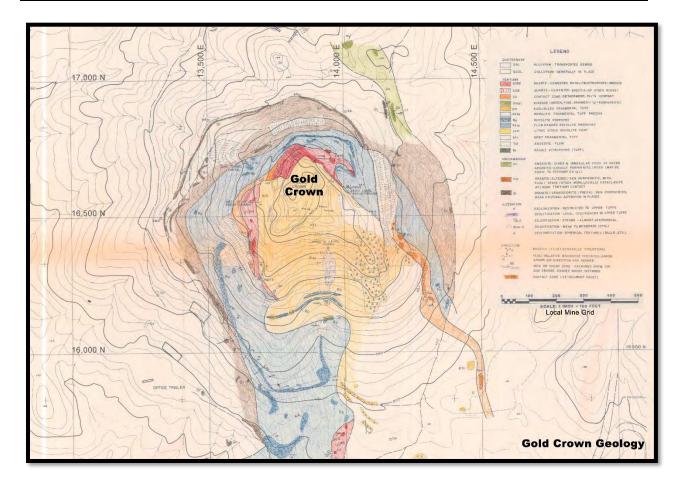
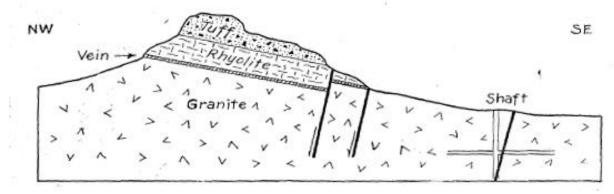



Figure 7-5 Gold Crown Local Geology Map

The vein occurs at the contact of granite and rhyolite. It strikes N55E and dips to the southeast at 12 degrees. A number of small faults cut the vein, and, in nearly all cases, the offset is only a few feet. At the south end, however, one fault displaces the vein 100 feet. A fault with a northwest trend drops the west side of the mineralized zone about 35 feet. A vertical section shown thru the mine is shown in figure 7.4-3 The outcrop of the vein is quite conspicuous because of the abundance of iron oxide which occurs at the contact of the granite and the rhyolite.

Figure 7-6 Vertical section thru Frisco vein. Not drawn to scale.

Banding is characteristic feature of the quartz that occurs in the vein. The color is from creamy white to light brown, and the texture is chalcedonic. The vein consists of many small stringers which cut the rhyolite. The appearance of much of the ore suggests that the lower portion of the flow was shattered by faulting prior to the introduction of the quartz. Banding occurs around these fragments of rhyolite, and the space between them is not always entirely filled with quartz but may be a vug lined with quartz

crystals. In places, the vein is eighteen feet thick, but most of it is narrower. In the lower portion of the vein, portions of the vein constituted the ore shoots. Iron oxide also occurs in the granite, and some of the iron-stained granite was mined for ore. Frequently it carried high concentrations of gold (Lausen, 1931).

7.4.3 Section 16

In the Granite and Granite Extension areas, the rocks have been propyllitically altered in the epizone, and there is a mineralization overprint of weak argillization, oxidation and hematite stain. This alteration is sometimes coupled with weak to moderate silicification.

The Granite deposit occurs as a blanket like deposit, which varies from a few feet to several hundred feet in thickness, strikes generally east/west. Gold mineralization is hosted in quartz-cemented breccias of propylitically altered preCambrian granite which is overprinted by mineralization. The gold is finely disseminated and probably occurs as micron sized particles.

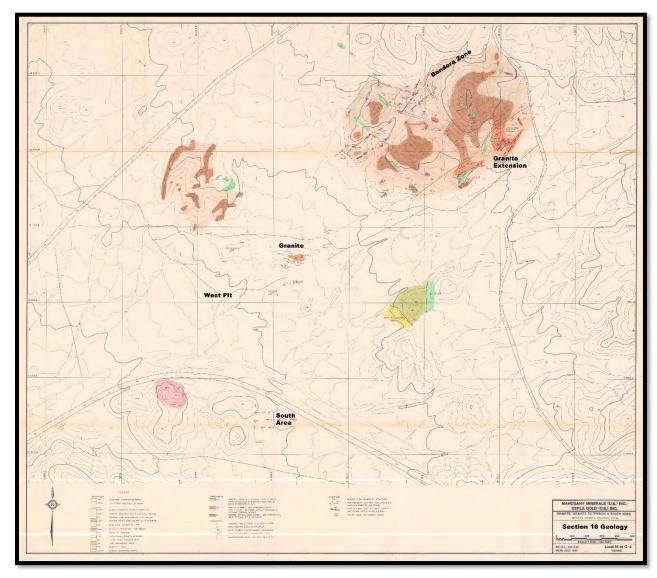


Figure 7-7 Section 16 Local Geology Map

8 DEPOSIT TYPES

Deposit Types – Describe the mineral deposit type(s) being investigated or being explored for and the geological model or concepts being applied in the investigation and on the basis of which the exploration program is planned.

The gold mineralization at the Frisco is primarily related to a gold-silver stock-work, brecciated, low sulphidation, epithermal vein system associated with regional scale faulting.

The author proposes two potential models to explain the mineralization at the Frisco project. The first is the brecciated low sulphidation, epithermal bonanza vein and hanging wall stockwork model, with gold mineralization the result of repeated boiling events. Mineralization of this type is found in the Oatman District, south of the project area.

"The ore deposits of the district are low-sulfidation, quartz-calcite-alduria-electrum epithermal veins, with associated quartz stockwork veining and silicified breccias, hosted by Tertiary volcanic rocks. Bonanza gold grades are locally encountered. Typically, bonanza mineralization occurs as discreet ore shoots within the larger quartz body or lode. The district is one of the type is usually associated with extensional tectonic regimes, alkali-rich host rocks and restricted vertical ranges of mineralization. The vertical range or ore deposition is bounded by paleo-boiling zone interfaces, which constitute the "bottom" of ore and paleosurfaces or paleo-water tables, which form the "top" of the ore. Individual gold-mineralized quartz bodies may be separated from each other by barren fault gouge or breccias zones. Occasionally, this deposit type may grade upward into near-surface, hot springs-related gold-silver deposits characterized by siliceous sinter or opaline deposits. Similar district deposits include Bodie, California; Guanajuato, Tayoltita and Pachuca Real del Monte, Mexico." (Guilinger, 2018)

The second proposed model is the low-angle detachment fault model, with gold deposition occurring as a result of fluid mixing at an oxidation-reduction boundary. Mineralization of this system has been traced to the north from the Oatman District, through the Secret Pass – Frisco Mine area, into the Van Deemen area some 40 mi to the north.

The Frisco project does not fall completely into either of these proposed models but shares most characteristics with the Oatman District, including vertical mineralized structures. The Frisco Mine and Union Pass faults are more clearly characterized as detachment faults to the north of the Secret Pass project, but in the project area they are both detachment and steeply dipping normal faults. The alteration and geochemistry share characteristics with both types of deposits.

9 EXPLORATION

Exploration – Briefly describe the nature and extent of all relevant exploration work other than drilling, conducted by or on behalf of, the issuer, including

(a) the procedures and parameters relating to the surveys and investigations;

(b) the sampling methods and sample quality, including whether the samples are representative, and any factors that may have resulted in sample biases;

(c) relevant information of location, number, type, nature, and spacing or density of samples collected, and the size of the area covered; and

(d) the significant results and interpretation of the exploration information.

INSTRUCTION: If exploration results from previous operators are included, clearly identify the work conducted by or on behalf of the issuer.

A number of companies have conducted exploration on the Frisco property since its discovery in the 1890s. A large amount of information has been generated, however not all that data has been recovered. Programs by prior operators are discussed in Section 6.0. Exploration drilling completed by historical operators is described in Section 10. Frisco Gold Corporation (FGC) acquired the property in April 2011. Work on the property since 2011 is discussed below.

The original data was received from Frisco Land and Mining upon signing of a lease agreement with Frisco Gold Company. This data set included plans and cross sections of the property and progress reports dating back to the 1970s.

In February 2015 Eric Stephan, a registered land surveyor with Cornerstone Land Surveying was contracted to survey the Frisco Mine patented claims in sections 9,15 & 16, t21N, R20W GSRM, Mohave County Arizona.

In May 2015, Frisco personnel collected material from the southwest end of the Gold Dome ore body. The sample material was sent to McClelland Labs in Reno for bottle roll tests to ascertain the rate and percentage of gold recovery using a cyanide solution. Results show that gold recovery in 96 hours was 49.9 % for material crushed to -3/8 inch and 63.0 % recovery for material crushed to -1/4 inch. Respective calculated head grades were 0.0639 and 0.0449 oz Au/ton ore. Reagent requirements were low. Additional information on the results of the metallurgical testing is available in Section 13 Mineral Processing.

In May 2015, independent geologist Robert Flesher, CPG was commissioned to use the exploration data to calculate a mineral resource using commercially available Maptek Vulcan 3-D Geologic Software. The currently modeled ore solid has an overall grade of .038 OPT Au showing 25,902 troy ounces contained in 675,462 tons. Information on methodology, calculations and estimation are Covered in Section 14, Mineral Resource Estimate.

In June 2016, previous authors were contacted to see if there was any additional information that would be useful for the project. Geological maps, drilling records, assay certificates, survey data and metallurgical test results were provided to Frisco by Doug Irving, project manager for Chapman, Wood

and Griswold, who worked on the project in 1987-1988. Digital copies of his files and maps were created and the originals returned to Mr. Irving.

In April 2019, Ms. Barbara Carroll, BSc, CPG ("Ms. Carroll") was engaged by Frisco Gold Corporation to produce a Technical Report on the Frisco Gold Project in Mohave County, Arizona. The purpose of this report is to document the history, geology, known mineral resource, and exploration potential of the Frisco Property and to demonstrate that the historical data confirm that the project merits additional work pursuant to the guidelines set forth by the Canadian National Instrument 43-101. While the technical report adheres to the same format of an NI-43-101 report, the company is not governed by the regulations of the Canadian Securities Administrators.

10 DRILLING

(a) the type and extent of drilling including the procedures followed and a summary and interpretation of all relevant results;

(b) any drilling, sampling, or recovery factors that could materially impact the accuracy and reliability of the results; (c) for a property other than an advanced property

(i) the location, azimuth, and dip of any drill hole, and the depth of the relevant sample intervals;

(ii) the relationship between the sample length and the true thickness of the mineralization, if known, and if the orientation of the mineralization is unknown, state this; and

(iii) the results of any significantly higher grade intervals within a lower grade intersection.

INSTRUCTIONS:

(1) For properties with mineral resource estimates, the qualified person may meet the requirements under Item 10 (c) by providing a drill plan and representative examples of drill sections through the mineral deposit.
(2) If drill results from previous operators are included, clearly identify the results of drilling conducted by or on behalf of the issuer.

Between 1972 and 1989 over 250 holes were drilled on the Frisco property to explore and define mineralization. Drilling was conducted by Red Dog Mining (Chester Millar) of Vancouver, B.C. in the early 1970s and 1982 followed by Frisco Land and Mining Company (Bonelli) from 1983-1985. Gerle Gold in a Joint venture with Mahogany Minerals conducted two phases of drilling in 1987 and 1988, followed by Ivernia West thru its subsidiary Mohave Mining Inc. in 1989. An inventory of known drilling on the project totals 36,135 feet in 289 holes including 10 core, 131 reverse circulation and 48 Air track holes. No drilling on the Frisco project area has been undertaken by Frisco Gold Company. A list of drill holes is included in Appendix C, and a drill-hole summary is shown in Table 10.1-1. Figure 10.4-11 shows a drill-hole location map for the Frisco patented ground, and Figure 10.4-2 shows the drill hole location map for State Section 16.

Company	Date	Number Holes	Feet	Туре
Red Dog Mining (Millar)	1972	8	750	Air track
	1973-	30*	1,842*	Air track
	1975			
	1980	20	3,970*	Rotary Air Blast/Air track
	1982	27	1,560	Air track
Frisco Land & Mining Company	1982	10*	390*	Air track
(Bonelli)				
	1983	20	1,715	Air track
	1985	16*	1,385*	Air track
Gerle Gold/Mahogany Minerals JV	1987	10	1,877.8	Core
	1987	56	10,270	Reverse Circ
	1988	49	6,880	Reverse Circ
Mohave Mining	1989	43	5,495	Reverse Circ
TOTAL		289	36,135	

Table 7.4-1 Summary of Holes Drilled at Frisco Project

*missing information

The drill hole inventory for pre 1987 drilling is incomplete. Reports refer to drill holes with no known location, reference is made to drilling a series of holes, where not all holes are recorded, assays are

found with holes with no locations. Additional holes with no clear reference to their origin were found on several of the historic maps. Their locations were digitized into the dataset but they are not included in any resource.

There were no down-hole surveys for the data recovered. Azimuth and dip (inclination) for the drill holes was entered from handwritten and typed lists in the files, lithologic logs, and lastly from drill hole maps.

Lithologic logs are available from the 1987-1988 Gerle Gold/Mahogany Minerals JV drilling. Drillers logs were recovered for four of the 1980 Red Dog Mining BB holes drilled in State Section 16. No lithologic logs were available for the Mohave Mining 1989 drilling. Lithology was not incorporated in the 2015 Frisco Gold Corporation resource data set.

The2015 Frisco Gold Corporation resource for Gold Dome is based on drilling and sampling done during several periods: 1972 and 1982 by Red Dog Mining (Chester Millar) of Vancouver, B.C.; 1983-1985 by Frisco Land and Mining Company (Benjamin Bonelli), 1987-1988 by Gerle Gold/Mahogany Minerals JV, and 1989 by Mohave Mining. There were a total 114 drill holes with collar coordinates and 76 trench samples in data set that were used in the resource estimate.

10.1 Pre 1987 Drilling

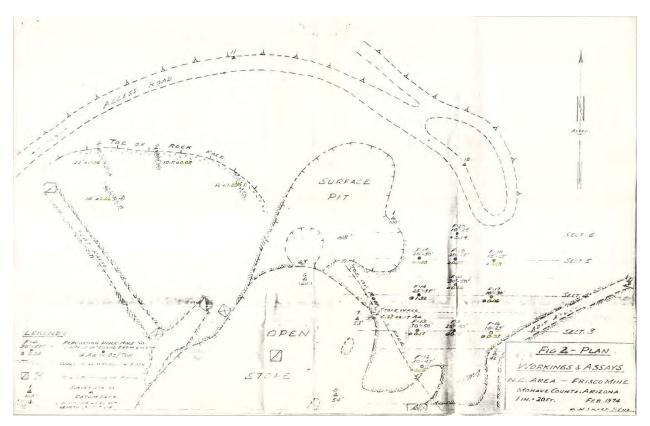
Data pertaining to pre-1987 drilling at Gold Dome is incomplete and drillhole locations are not known with a sufficient degree of accuracy to be reliable. Gerle Gold was able to locate only one former drill hole at Gold Dome and it is believed to be Hole RC 4 (later corrected to be RC 3) situated to the northeast of the open pit. In addition, a portion of a former drilling grid (1982) was located immediately west of the limits of mining and was reconstructed by brunton and tape survey. That grid has a North 12 1/2° W orientation. A series of 'F' holes lying in the center and western portions of the Gold Dome open pit were laid out on the ground using the reconstructed grid and a drill-hole location map. A number of those locations were surveyed with a plane table and tied into the May 1987 survey grid established by JM Kessler (Irving D. , Gold Dome Resource Inventory, 1988). A review of the March 1988 resource revealed that Gold Dome hole locations for the F , 85 and RC series holes were incorrectly located. These holes were corrected for maps and reports produced after May 1988.

10.1.1 1972 Red Dog Mining

In 1972, Red Dog Mining drilled 8 holes totaling 750 feet in the area of the Gold Crown.

Four vertical holes were drilled near the top of the hill and were designed to cut through the remnant between the stope and outcrop. Two of these on the west side intersected caved ground (or workings) and were unproductive. Two others, about 50 feet apart and on the hill, assayed as follows (in part:

 Table 10.1-1 Summary of Gold Grades for 1972 Red Dog Drilling
 Image: Comparison of Cold Grades for 1972 Red Dog Drilling


F3	20-30'	0.08 oz Au/ton
	30-40'	0.18 oz Au/ton
F4	20-30'	0.03
	30-40'	0.03

40-50' 0.20

Four other vertical holes were drilled low down on the southern flank of the hill, designed to intersect the ore bed about 500 feet down-dip from the stope. These penetrated about 130 feed of tuff before entering red granite and were drilled about 50 feet past this contact. Results were negative. One last hole was put down over the site of underground workings reached out from a shaft near the old highway, where a 60-foot-thick zone of low grade ore is said to have been found. This hole intersected badly broken ground and stopped at 60 feet, showing no values. The shaft is reported to be 300 feet deep and would be a good source of water (Millar, 1973). Samples were sent to Arizona Testing Laboratory) in Phoenix for analysis. Assay certificates are available for these holes.

10.1.2 1973-1975 Red Dog Mining

The F series Air track holes F1 thru F24 were drilled around the Gold Crown. Sampling of the northeastery extension of the Gold Crown ore breccia was done by a standard Air track percussion drill. Vertical holes were drilled at 20' x 20' spacing on 3 lines of holes, and the cuttings from either 5 foot or 10 foot consecutive runs were collected. Representative portions of these were obtained by coning and quartering. (Sharp, 1974). The Gold Crown plan map shown below shows some of the hole locations.

Figure 10-1 1973 Drilling at Gold Crown

Holes F25 thru F35 were drilled to the west of what is now known as the Gold Dome Pit and served to establish mineralization associated with the Frisco Fault in that area. Holes F6,7,8,9,10 were drilled around the old townsite and showed no values down to 170 feet – no assay certificates were found for those holes, just handwritten note on assay certificate. Information available for holes F32, 33, 34, 35

includes hole location and assay information included on cross sections. All samples were assayed for gold at a custom laboratory (Arizona Testing Laboratory) in Phoenix. Assay certificated are available for holes most of holes F1 thru F31.

10.1.3 1980 Red Dog Mining

In 1980 Red Dog Mining initiated a program of 6 inch diameter rotary air-blast drill holes in Section 16, during which 20 holes were sunk to depths of from 200 to 500 feet. Drill cuttings from every 10 feet were collected, 320 lbs., mixed in a cement mixer and sampled. Each sample was split, one split going to Arizona Testing Laboratories of Phoenix, Arizona for atomic absorption analysis, the other to General Testing Laboratories (GTL) in Vancouver, BC for fire assay. There is also record of fire assays received from Jacobs Assay Office in Tucson for these holes.

Two holes produced low but significant gold values, BB4 and BB6. Two supporting holes, BB10 and BB18, were drilled within 100 feet of BB4; both were barren. Five supporting holes, BB13, BB14, BB15, BB16 and BB17 were located on the arc of a 100 foot circle drawn around BB6; all but BB16 and BB17 repeated the significant values. Hole BB20 was drilled within 40 feet of BB6 with the deliberate purpose of producing a sample of cuttings for metallurgical testing; it too repeated the significant values.

The duplicate methods of assaying produced a disturbing conflict, that of fire assaying yielding consistently higher values than atomic absorption. An inspection of the assay results indicated that atomic absorption assays on solid samples report only 76% of the actual gold content. Gold: silver ratio has been determined to be 1:1.

A deep percussion drill hole located a few hundred feet North of the section North boundary is reported to sustain a water flow of 60 gallons per minute. (Campbell, 1981)

Information is incomplete on the 1980s drilling. The hole locations were digitized from existing historic maps; on the map the holes are designation B#. Drill logs are available for holes BB6, BB13, BB14 and BB15. Assay certificates are available from ATL, GTL and Jacobs for nine holes BB1, BB2, BB4, BB6, BB13-BB17 totaling 3,970 feet.

10.1.4 1982 Red Dog Mining

Twenty-seven F series Air track holes F51 thru F83 totaling 1,560 feet were drilled by Red Dog Mining in February 1982 to confirm the mineralization to the west and in the center of the Gold Dome pit. Hole locations were digitized from May 1989 Surface Plan maps and checked against revised coordinates and elevations for 'F' series holes. There is no record of the lab that analyzed the samples. Typed assays were found for sixteen of the F-series holes. No drill logs were available for these holes.

10.1.5 1982-1985 Frisco Land & Mining Company

From 1982 thru 1985 Frisco Land and Mining Company (FLMC) conducted extensive shallow drilling on the both State Section 16 and patented ground to determine the additional shallow reserves. Drilling was not designed to discover reserves deeper than 100 to 150 feet (Bonelli D., Introductory Report on the Frisco Mine, 1987).

Information is incomplete on the drilling done during this time frame by FLMC. Drill hole locations were digitized from several of the historic maps available for the project. Assay results are available for many of the holes.

In 1982 FLMC drilled several holes on State Section 16 totaling 390 feet and sent samples to General Testing Laboratories in Vancouver for analysis. Assay certificates are available with results from 57 samples for holes BB82-1, BB82-2, BB82-11, BB82-3, BB82-4, BB82-5, GG82-6, BB82-7, BB82-8, BB82-9. Hole locations were found for 6 of the holes in this series.

No hole locations were recovered for the FLMC 1983 drilling around the Gold Dome deposit. Typed assay results for Au oz/t are available for holes 83-21 and 81-22. There is no reference to the lab that performed the testing or the methods used for analysis.

In 1983, FLMC drilled 20 exploration holes on State Section 16 totaling 1,715 feet. The samples were sent to Arizona Testing Laboratories in Phoenix for analysis. Assay certificates are available for 175 samples with results for holes BB83-1 thru BB83-20. Hole locations were found for 11 of the holes in this series.

Information was found for 8 holes totaling 715 feet drilled in 1985 by FLMC drilled in the Gold Dome area. Holes have the designation 85-. Holes 85-11-13 were drilled northwest of the pit looking to test mineralization associated with the Frisco Fault. The remainder of the holes were drilled in what is now the Gold Dome pit. Hole 85-9 averaged 0.076 over 49 feet; 85-10 averaged 0.025 over 40 feet; 85-11 averaged 0.042 over 50 feet; 85-12 intersected the Frisco Fault; Hole 85-13 intersected the Frisco fault, and averaged 0.050 over 40'; 85-14 averaged 0.050 over 70 feet. Typed Au oz/t assay results for 63 samples are available for holes 85-9 thru 85-15C. There is no reference to the lab that performed the testing, or the methods used for analysis.

The CM series holes, and RC series holes were included on the maps, cross sections, resource and have assay information available for them. CM series – one hole totaling 370 feet. RC series 3 holes totaling 370 feet. No information is available on the company that drilled these holes.

In 1985 FLMC drilled 4 holes in the Little Frisco deposit. Hole locations are shown on the Gerle Gold geology map, with the designation DH5185-. No other information is available on those holes.

10.2 Gerle Gold/Mahogany Minerals JV

Information on the drilling done by the Gerle Gold/Mahogany Minerals JV in 1987-1988 as summarized in Table 10.2-1 was well documented. Drill hole locations were surveyed using plane table, drill logs were available for all holes, and assay certificates were available for the core holes drilled in 1987. Most of the drilling and sampling was done under the supervision of Ed Huskinson, Consulting Geologist of Kingman, Arizona. Carl LaLonde, Consulting Geologist of Vancouver, B.C. provided assistance for the project (Irving D., Gold Dome Resource Inventory, 1988).

ТҮРЕ	AREA	NO. OF HOLES	TOTAL FOOTAGE
Core	Gold Crown	3	523.2
	Gold Dome	2	636
	Granite	2	279
	Granite Extension	2	239.6
	South Area	1	200
	TOTAL	10	1,877.8
Reverse Circulation	Gold Crown	6	420
	Gold Dome	7	1180
	Granite	25	6095
	Granite Extension	14	1850
	West Pit South of	4	725
	Granite		
	TOTAL	56	10,270

Table 10.2-1 Summary of Drilling completed in 1987 by Gerle Gold/Mahogany Minerals JV

10.2.1 1987 Gerle Gold/Mahogany Minerals JV (pre-August 31)

The following discussion of the Gerle Gold Drilling is taken from (Hrkac, Progress Report on the Frisco Property Joint Venture Mohave County Arizona, 1987 September) report with additional information as cited.

Ten core holes were drilled to establish geologic control to aid in interpretation of the pending rotary drill sampling program. Five of the holes were drilled in State Section 16, the remaining five were drilled on Frisco Patented ground.

Table 10.2-2 Summary of Drilling completed pre-Aug Dec 1987 by Gerle Gold/Mahogany Minerals JV

Area	No of Holes	Total Footage
Patented Ground	5	1,159.2
Section 16	5	718.6
	10	1,877.8

1987 core drilling was contracted to Muncy Drilling of Glendale Arizona. Reverse Circulation drilling was contracted to George DeLong Drilling of Winnemucca, Nevada using a truck-mounted drill. Brown Drilling of Kingman, AZ did some rotary drilling in 1987 using a 4.5-in. down-the-hole Mission hammer and a cyclone sample catcher. Samples were split on the rig with a Gilson sample splitter (Irving D., Frisco area drilling, Mohave Co., AZ, 2019). Details of type of rigs or drilling and sampling methods was not available.

Field work was supervised by geologist Ed Huskinson.

Drill logs are available for all core and reverse circulation holes. Holes were logged by Ed Huskinson.

Samples from the core drilling were sent to Chemex in Reno, Nevada for Au, Ag assay. All samples were analyzed for gold and most samples were analyzed for silver by fire assay methods with an atomic absorption spectroscopy ("AA") finish.

Assay certificates are available for all samples.

10.2.2 1987 Gerle Gold Drilling (August 31 to December 31)

The following discussion of the August thru December 1988 Gerle Gold Drilling is taken from (Hrkac, Progress Report on the Frisco Property Joint Venture Mohave County Arizona, 1987 December) report with additional information as cited.

Fifty-six reverse circulation holes were drilled expand the known mineralization and delineate reserves. Forty-three of the holes were drilled in State Section 16, the remaining thirteen were drilled on Frisco Patented ground.

Area	No of Holes	Total Footage
Gold Crown	6	420
Gold Dome	7	1180
Granite	25	6095
Granite Extension	14	1850
West Pit South of	4	725
Granite		
	56	10,275

Table 10.2-3 Summary of Drilling completed Aug thru Dec 1987 by Gerle Gold/Mahogany Minerals JV

Reverse Circulation drilling was contracted to George DeLong Drilling of Winnemucca, Nevada using a truck-mounted drill. Brown Drilling of Kingman, AZ did some rotary drilling in 1987 using a 4.5-in. down-the-hole Mission hammer and a cyclone sample catcher. Samples were split on the rig with a Gilson sample splitter (Irving D., Frisco area drilling, Mohave Co., AZ, 2019).

Assaying for gold and silver for reverse circulation drilling was done by G.D. Resources, Inc., of Sparks, Nevada. No certificates are available for these samples; assay values were handwritten in the drill logs and annotated on cross sections.

Drill Logs available for Gold Crown and Section 16 1987 holes. Logs have assay sample numbers included.

10.2.2.1 GOLD CROWN

During 1987, Gerle Gold drilled 3 core holes totaling 523.2 feet were drilled on the east side of the Gold Crown area (Holes FR87-1 thru FR87-3) to establish geologic control to aid in interpretation of the pending rotary drill sampling program.

A fence of six reverse circulation drill holes were drilled at a fifty foot spacing on an east-west section midway between the Gold Dome Pit and the Gold Crown Stope. (i.e. 1000 feet north of the Gold Dome Pit and 1000 feet southeast of the Gold Crown.)

All the holes intersected the Qcrb (Quartz cemented rhyolite breccia) which hosts the gold values at the Gold Dome and Gold Crown. The Qcrb was 10 to 20 feet thick but contained no economic gold values.

Although not mineralized at this locality the drill holes support the original hypothesis that the Qcrb is continuous over the 2000 feet of strike length from the Gold Crown to the Gold Dome.

10.2.2.2 GOLD DOME

During 1987, Gerle Gold drilled 2 core holes totaling 636 feet in the immediate Gold Dome area (Holes FR87-4 and FR87-5). In addition, 7 reverse circulation holes, GD87-1 to 7, totaling 1180 feet were drilled in 1987 to test the continuity of mineralization to the north and west of the Gold Dome Pit.

The drilling located a rotation fault 100 - 150 feet north of the Pit. This fault has dropped the mineralized zone and reversed 'the dip from a north dip at the pit to a south dip north of the fault. The result is that the stripping ratio immediately north of the fault limits open pit mining.

The drill hole drilled to test the west extension intersected the Qcrb but returned no values.

The best mineralization appears to lie within a 200 foot wide zone centered on the Frisco Fault. This concept will be tested by drilling easterly from the Gold Dome Pit toward the King Edward Fault, a distance of 1200 feet.

10.2.2.3 GRANITE ZONE

At the Granite Zone, two core holes were drilled in the Granite Pit Area (FR87-6, 7) to establish geologic control. Hole FR87-6 intersected 77 feet of alluvium. Hole FR87-7 intersected 60 feet of 0.028 opt Au of mineralized altered rocks of the fault zone and served to confirm the mineralization found in hole BB6 drilled previously.

Reverse circulation drill holes were placed at 100 foot intervals along four sections spaced 200 feet apart. All twenty-five drill holes intersected the altered rocks of the fault. Gold-silver mineralization was intersected over a width of 200 feet and a length of 600 feet open to extension to the northeast.

10.2.2.4 GRANITE EXTENSION

Both core holes drilled in the Granite Extension (FR87-8, 9) confirmed the presence of alteration associated with the fault zone.

Twelve of fourteen holes drilled intersected the alteration associated with the fault. The first hole northeast of the mineralization in the Granite Zone is 900 feet away and intersected 45 feet of 0. 033 opt Au or 65 feet of 0. 024 opt Au. Five hundred feet northeast of this hole a second intersection of 60 feet of 0.024 opt Au was cut.

10.2.2.5 West Pit Zone

One section of five holes was drilled 500 feet southwest of the Granite Zone. All holes intersected the alteration of the fault but were not mineralized.

10.2.2.6 South Area

One 200 foot core hole was drilled in the South Area (FR87-10) to establish geologic control. The hole intersected unmineralized flow breccia.

10.2.3 1988 Gerle Gold/Mahogany Minerals JV

Drilling was contracted to Dateline Drilling of Missoula, Montana and was done using a crawler-mounted reverse circulation drill (Irving D., Frisco area drilling, Mohave Co., AZ, 2019). The bulk of the reverse circulation drilling was done wet with samples typically taken over 5-foot intervals. Drill hole diameter was 4 1/2 inches. No additional details of type of rig or drilling and sampling methods were not found. Holes were logged by D. Irving, P Eng. Drill logs were available for the 1988 Gerle Gold/Mahogany Minerals drilling. Samples from the reverse circulation drilling was sent to GDI for Au, Ag analysis. No certificates are available for these samples; assay values were handwritten in the drill logs and annotated on cross sections.

Туре	AREA	NO. OF	TOTAL
		HOLES	FOOTAGE
Reverse Circulation	Gold Crown	12	910
	Gold Dome	24	3,230
	Bandera	2	350
	Granite	6	1,320
	Granite Extension	1	150
	West Pit South of	4	920
	Granite		
	TOTAL	49	6,880

10.2.3.1 GOLD CROWN

On the southeast flank of Gold Crown at 16,000N and from 13,950E to 14,200E a section of six shallow drill holes at 50 foot spacing were drilled. The host quartz-rhyolite-breccia (Qcrb) was intersected in all the holes but was not mineralized and varied from seven to two and a half feet thick.

At section 16,450N five holes were drilled from 13,925E to 14,040E. All intersected the host Qcrb unit which varied from 10 to 15 feet thick. These holes are on the east shoulders of Gold Crown. Hole GC-88-8 closest to the underground workings returned 20 feet of 0.017 opt gold. Hole GC-88-12, 230 feet west of GC- 88-8 intersected 33 feet of Qcrb, 35 feet averaged 0.031 the last 10 feet averaged 0.066 opt gold. This hole is near the West Stope and indicates the presence of a thick unmined section of Qcrb. This is significant in light of high grade 5 foot panel samples taken on the walls of the West Stope (Hrkac, Progresss Report on the Frisco Property Joint Venture Mohave County Arizona, 1988 April).

10.2.3.2 GOLD DOME

In January of 1988, a further 3,100 feet of reverse circulation hole was drilled in 23 holes (GD88-I to 23). The program included step-out drilling that served to extend the mineralization to the east of the existing Gold Dome pit.

10.2.3.3 BANDERA

A cross-section of two reverse circulation drill holes was completed at the north end of the Bandera Zone. The holes were drilled to intersect the two narrow gold-bearing vein systems at shallow depth however no economic intersections were located (Hrkac, Progresss Report on the Frisco Property Joint Venture Mohave County Arizona, 1988 April)

10.2.3.4 GRANITE ZONE

The potential northeast extension of this zone was tested by a fence of six drill holes at 100 foot spacing on a cross-section located 200 feet northeast of the zone. One hole (EEE) returned a 50 foot section averaging 0.025 ounces of gold per ton.

10.2.3.5 GRANITE EXTENSION:

Only one hole was drilled in the Granite Extension. Hole LL located on L 4+00NE at 1+00NW, the most northeasterly hole drilled to date, returned 10 feet of 0.04 ounces of gold per ton starting from the overburden/bedrock interface. This hole together with previously drilled holes indicates a mineralized zone over a strike length of 800 feet open to extension. This zone starts 700 feet northeast of L 11+00SW the last section drilled on the Granite Zone

10.2.3.6 WEST PIT ZONE

Four holes at 100 foot spacing were drilled on section 26+00SW, the most southerly section drilled to date. All the holes intersected the fault zone. Gold values were not economic but gold values were significantly better than the section drilled 200 feet northeast.

10.3 Mohave Mining Inc.

The following discussion of the Ivernia Drilling is taken directly from (Graham, Frisco Agreement, Frisco Property, Mohave County, Arizona, 1989) report.

Ivernia's plan for the first part of 1989 was, through its newly established subsidiary, Mohave Mining Inc., to drill out an indicated Gold Dome deposit on the Frisco property and to drill test a target on the Granite property. This was accomplished in a single drill program extending from January 28 through March 6 with 37 holes (GD89-1 thru GD-37) totaling 4620 feet on the Gold Dome deposit, and 6 holes (GE89-1 through GE89-6), totaling 875 feet on the Granite Extension.

Туре	AREA		NO. OF HOLES	TOTAL FOOTAGE
Reverse	Circulation	Gold Dome	37	4,620
		Granite Extension	6	875
	TOTAL		43	5,495

Drilling was contracted to Rough Country Drilling Ltd. of Riverton, Wyoming, and was done using a Simco 4000, track mounted, reverse circulation drill and track mounted compressor. Drill hole diameter was 4 3/4 inches. Samples were sent to Skyline Labs in Tucson and a 30 gram portion of each was fire assayed for gold and silver. Assay certificates are available for all samples. Field work was supervised by geologist Ed Huskinson (Graham, Frisco Agreement, Frisco Property, Mohave County, Arizona, 1989). No Drill Logs Were Available For The Mohave Mining Drilling.

10.3.1 : Gold Dome

The 1989 program was designed to confirm reserves remaining in the western deposit and to prove the eastern extension. Thirty-seven holes totaling 4,620 ft. were drilled. Expected results were not achieved. Reserves remaining in the western deposit were found to be 116,000 tons grading 0.037 oz. Au/ton and those in the eastern extension were only 79,000 tons grading 0.051 oz. Au/ton. Total reserves are 195,000 tons at a grade of 0.043 oz. Au/ton. The silver content is insignificant.

10.3.2 Granite Extension

The program consisted of six vertical holes totaling 875 feet. No site preparation was necessary and the area drilled forms part of a large wash, containing many pre-existing roads.

No evidence of any continuation of mineralization intersected previously in holes LL and PP was found. However, a new zone of low grade gold mineralization was found in the last two holes drilled, 89-5 and 89-6. In hole 89-5, all the granite section intersected (75ft) is anomalous in gold, and from 65-75 ft., it assays 0.032 oz. Au/ton. In hole 89-6, a similar granite section, containing substantial vein quartz and calcite, is anomalous in gold over the 105ft. intersected, and between 105 and 115ft., it assays 0.033 oz. Au/ton. These results provide indications of the possible occurrence of another deposit similar to the originally discovered Granite deposit.

10.4 Drill Hole Location Maps and sections.

There are two main areas controlled by Frisco Gold Corporation, the Patented Claims, and State Section 16. Figures 10.4-1 and 10.4-2 show the drill hole locations and section lines for the accompanying maps. Figures 10.4-3 and 10.4-4 show the sections thru the Gold Crown Deposit. Figures 10.4-5, 10.4-6 and 10.4-7 show the section lines thru the Gold Dome Deposit. A plan map for the Gold Dome area which includes the drill hole locations can be found in Section 14 of this report. Figures 10.4-8 and 10.4-9 show the sections thru the Section 16 Granite zone and Figures 10.4-10 and 10.4-11 show the sections thru the Section 16 Granite Extension.

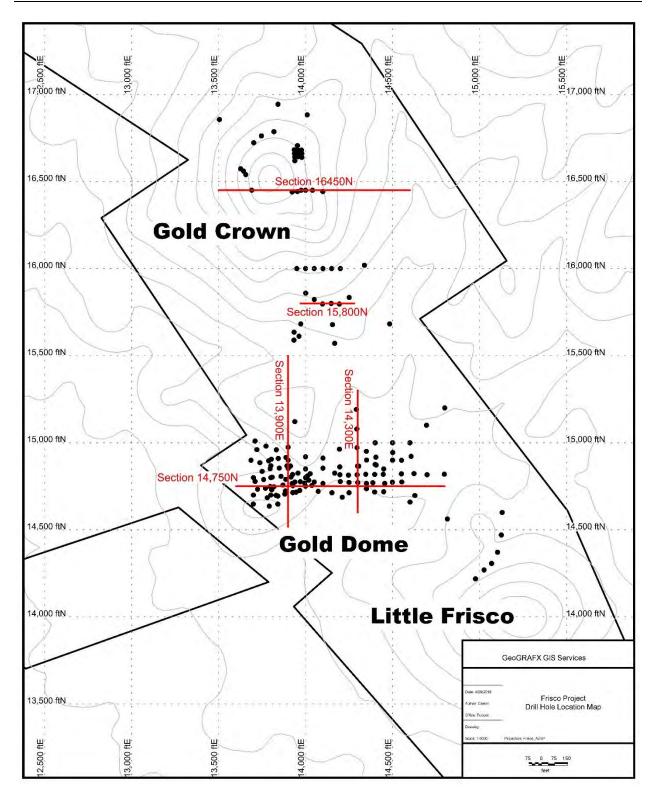


Figure 10-2 Frisco Patented Claims Drill Hole Location Map

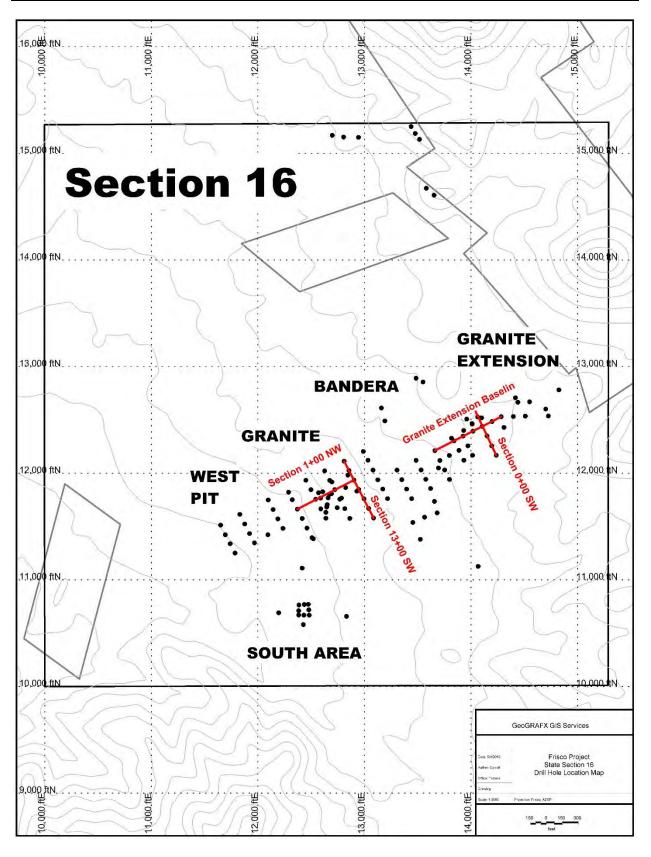


Figure 10-3 Section 16 Drill Hole Location Map and Section Lines

Figure 10-4 Gold Crown Section 16,450N

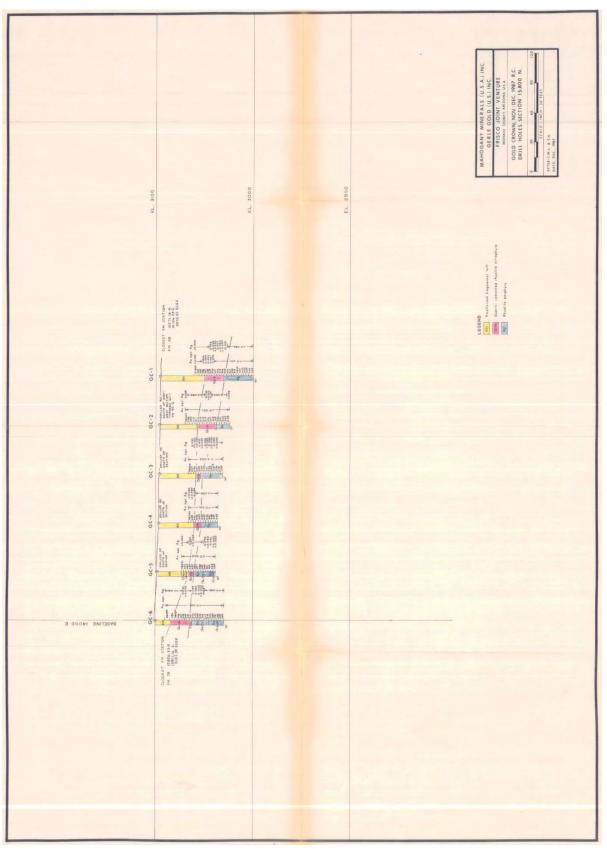


Figure 10-5 Gold Crown Section 15,800N

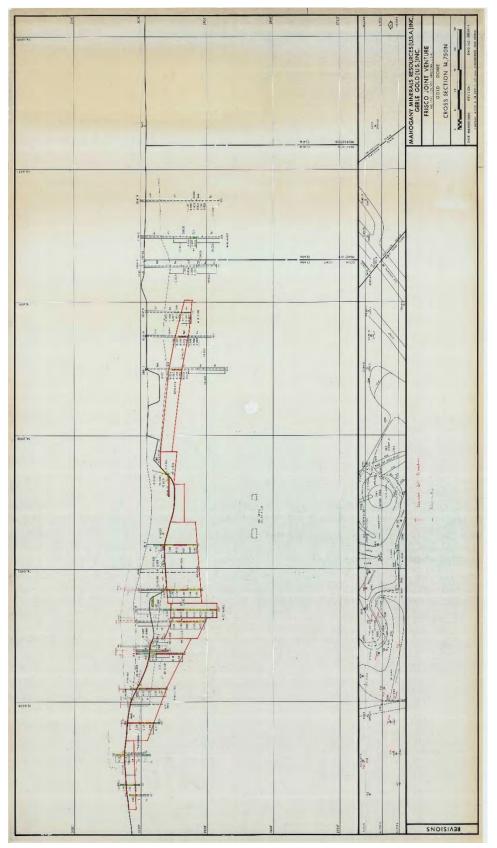


Figure 10-6 Gold Dome Section 14,750N

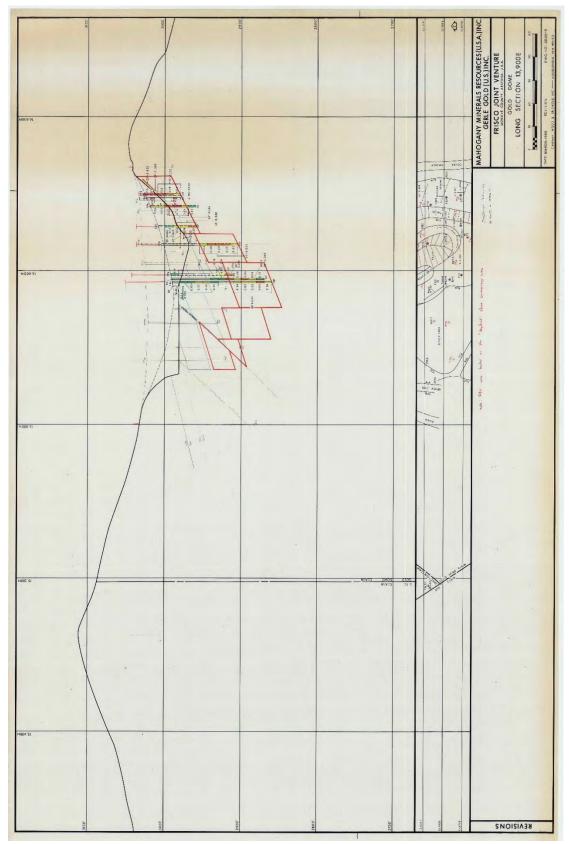


Figure 10-7 Gold Dome Section 13,900N

Technical Report on the Frisco Gold Project Frisco Gold Corporation

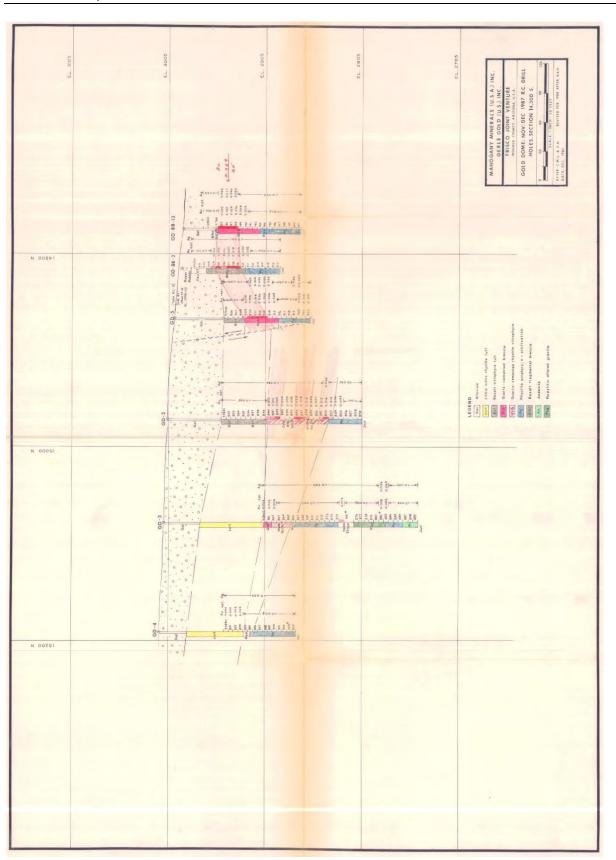


Figure 10-8 Gold Dome Section 14,300E

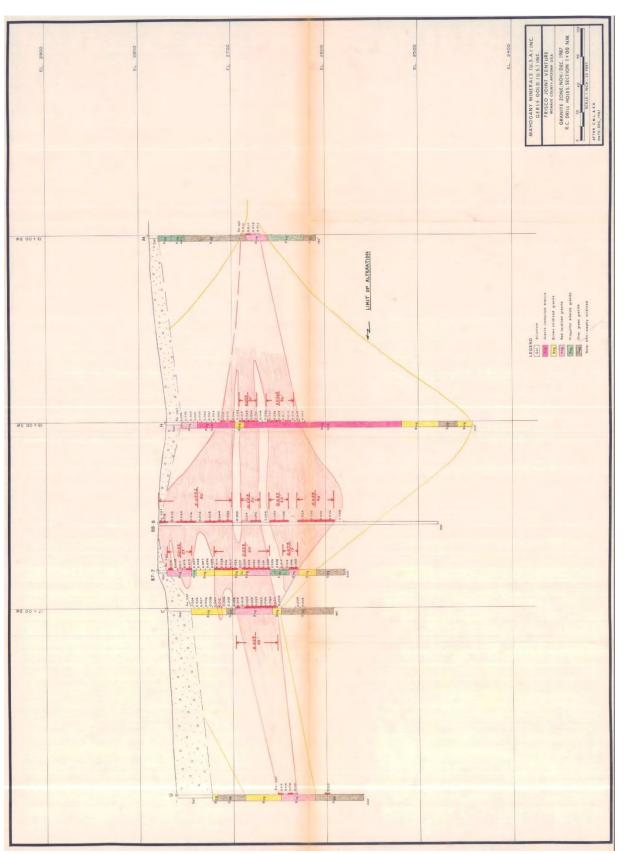


Figure 10-9 Section 16 Granite Zone Section 1+00 NW

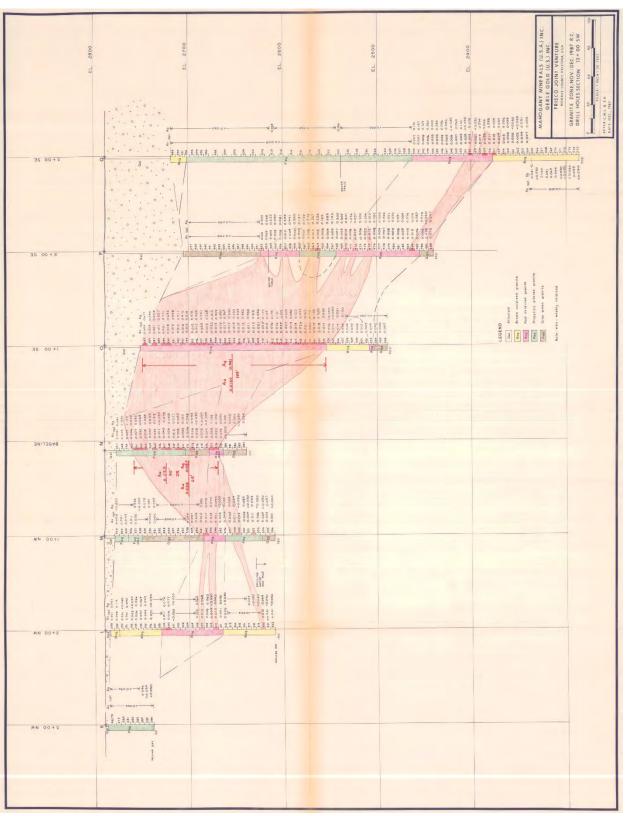


Figure 10-10 Section 16 Granite Zone Section 13+00 SW

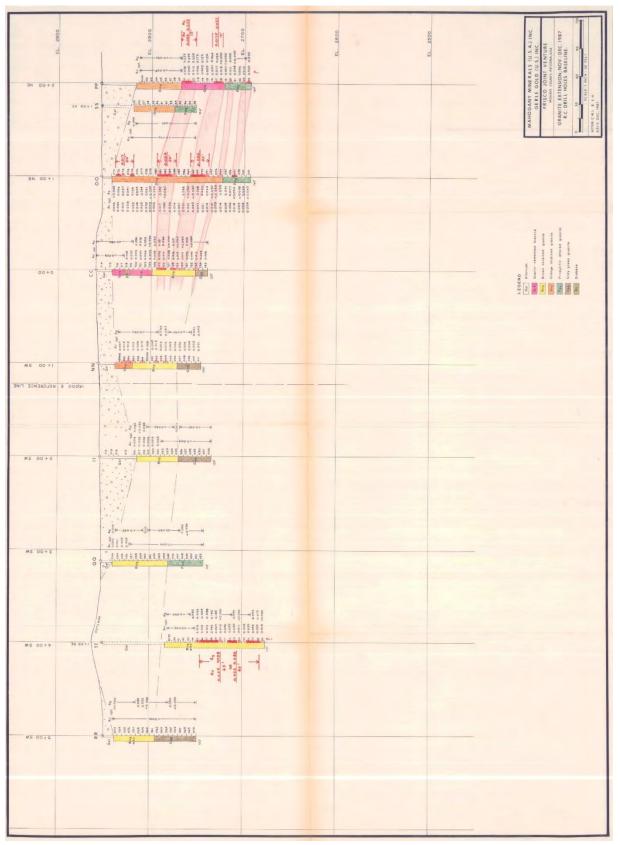


Figure 10-11 Section 16 Granite Extension Baseline

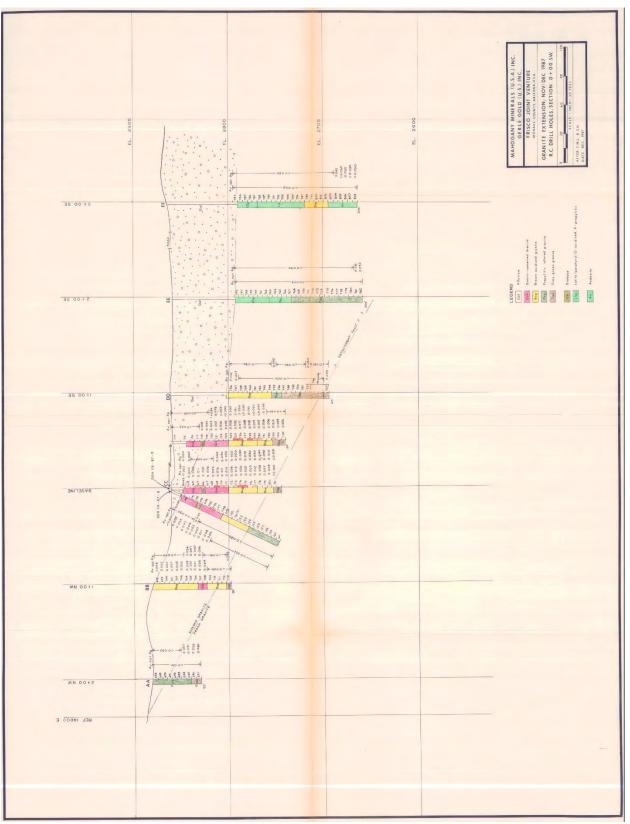


Figure 10-12 Section 16 Granite Extension Section 0+00 SW

11 SAMPLE PREPARATION, ANALYSES AND SECURITY

Sample Preparation, Analyses, and Security – Describe

(a) sample preparation methods and quality control measures employed before dispatch of samples to an analytical or testing laboratory, the method or process of sample splitting and reduction, and the security measures taken to ensure the validity and integrity of samples taken;

(b) relevant information regarding sample preparation, assaying and analytical procedures used, the name and location of the analytical or testing laboratories, the relationship of the laboratory to the issuer, and whether the laboratories are certified by any standards association and the particulars of any certification;

(c) a summary of the nature, extent, and results of quality control procedures employed, and quality assurance actions taken or recommended to provide adequate confidence in the data collection and processing; and (d) the author's opinion on the adequacy of sample preparation, security, and analytical procedures.

This section summarizes all information known to the author relating to sample preparation, analysis, and security, as well as quality assurance/quality control procedures and results, that pertain to the Frisco project. The information has been compiled by the author from historical records and personal communication with previous mine site personnel as cited.

Date	Company	Work Performed
1972 - 1982	Red Dog Mining (CF Millar)	Drilling
1980	Red Dog Mining (CF Millar)	Drilling in Section 16
1982	Red Dog Mining (CF Millar)	Drilling
1982	Frisco Land & Mining Co (Bonelli)	Drilling
1983-1985	Frisco Land & Mining Co (Bonelli)	Drilling, Feasibility, Stockpiling Ore, Mining
1987	Gerle Gold Ltd.	Surface, underground sampling, drilling
1988	Gerle Gold Ltd.	Drilled over 100 holes, resource, met testing
1989	Ivernia West/Mohave Mining	Drilled 50 holes, resource, met testing

Table 10.4-1 Documented Exploration Work on the Frisco Property

11.1 SAMPLE PREPARATION

11.1.1 Surface Sampling

There were no descriptions found of sample preparation methods, sample security measures or chain of custody procedures utilized by any of the companies that collected surface samples at the Frisco project.

11.1.2 Historic Drilling

In 1980 Red Dog Mining drilled 20 holes in State Section 16. Drill cuttings from every 10 feet were collected, 320 lbs., mixed in a cement mixer and sampled. Each sample was split, one split going to Arizona Testing Laboratories of Phoenix, Arizona for atomic absorption analysis, the other to General Testing Laboratories (GTL) in Vancouver, BC for fire assay. There is also record of fire assays received from Jacobs Assay Office in Tucson (Campbell, 1981).

D. Irving, P. Eng, reports that sampling of Gerle Gold drill-hole cuttings was normally done with a cyclone collector and riffle splitter; samples were usually prepared in duplicate at the site with one for the lab and one for storage (Irving D., Frisco area drilling, Mohave Co., AZ, 2019).

Other than the above citations, there were no descriptions found of sample preparation methods, sample security measures or chain of custody procedures utilized by any of the companies during the Frisco drilling.

11.1.3 Metallurgical Sample

There were no descriptions found of sample preparation methods, sample security measures or chain of custody procedures utilized by any of the companies for the historical metallurgical testing at the Frisco project.

Mineralized material for the 2015 metallurgical testing was collected from outcroppings, under the direct supervision of Joe Bardswich, P.E., placed in five-gallon buckets, lids were placed on each bucket and tattle tale tape used across the lid/bucket interface. The buckets were taken to UPS by Bardswich and direct shipped to McClelland Laboratories, ATTN Gene McClelland in Sparks, NV. McClelland handled sample preparation upon receipt. (Bardswich L., Frisco Met Sample, 2019, May 1)

11.2 Sample Security

The author has found no information on the sample security measures or chain of custody procedures employed by the historic operators. Sample security for the 2015 metallurgical sample was discussed above.

11.3 Sample Analyses

In the 1980s, the commercial laboratories routinely assayed for gold and silver by Atomic Adsorption Spectroscopy (A.A.S), wherein the samples are first digested in a hot cyanide solution and then analyzed to determine gold and silver content in the resulting liquor. Some of the results are based on analysis of hot agitated cyanide leach solutions. Copies of assay and check assay records remain in the Company files.

All of the laboratories used standard sample preparation methods, which involves first drying the samples and then processing through a jaw crusher. Each sample is then further reduced through a cone or thin-disk crusher, which results in a product of minus ten-mesh. A split is taken from the minus ten mesh material and then pulverized for acid digestion. Each laboratory has its own method of internal checks, but normally check assays are performed on every tenth to twentieth sample.

All laboratories utilized for analytical testing are independent from Frisco Gold Corporation.

11.3.1 Surface Sampling

In 1987 thru 1988, Gerle Gold sent surface samples to Chemex Labs Inc in Sparks for analysis. Samples were crushed, split and pulverized to -140 mesh. Analytical procedures Ag oz/T: Agua regia digestion, AAS method, detection limit 0.01. Au oz/t detection limit 0.001. Certificates of Analysis are available for all samples analyzed.

Historical documentation shows Chemex used the following procedure to prepare the samples (Chemex code 207):

- a) samples arrive in poly or olefin rock bags. Samples are ordered prior to crushing.
- b) The sample is poured into a primary jaw and crushed to approximately 1/4 inch. This is secondary crushed in a roll or cone crusher to approximately 10 mesh.
- c) The crushed sample is then split using a Jones Riffle splitter to approximately 250 to 350 grams. The reject is poured into the original bag for storage or return to client.
- d) The sample split is ground in a Bico rotary pulverizer and screened to 140 mesh. The +140 material is visually inspected for metallics.
- e) If NO metallics are found, then the +140 fraction is hand ground to -140. The entire sample is then homogenized (by rolling).
- f) IF metallics are found, they are put into a separate coin envelope, kept with the original sample, and fused separately. The entire -140 fraction is homogenized.

Samples were analyzed for Au and Ag using the following procedures:

Gold Analysis (Chemex code 998) Fire assay – AA finish. Gold analyses are done by standard fire assay techniques. A prepared sample (1 assay ton (29.166 grams)) is fused with a neutral flux inquarted with 5 mg of Au-free silver and then cupelled. Silver beads for AA finish are digested for 1/2 hour in 1 ml diluted 75% nitric acid, then 3 ml of hydrochloric is added and digested for 1 hour. The samples are cooled and made to a volume of 10 ml, homogenized and analyzed by atomic absorption spectroscopy.

Any samples which assay over 0.4 oz/ton (13.6 g/t) are automatically re-fire assayed using gravimetric finish. The gravimetrically determined gold content is substituted into the certificate of analysis. Detection Limit for Au was 0.001 oz/ton.

Silver Analysis (Chemex code 385) Silver analysis was performed on a prepared sample that was digested in a hot nitric-hydrochloric acid mixture, taken to dryness, cooled and then transferred into a 250 ml volumetric flask. The final matrix was 25% hydrochloric acid. The solutions were then analyzed by AA. Detection limit for Ag was 0.01 oz/ton.

These procedures were consistent with current accepted industry practice both currently and in the 1980s.

11.3.2 Historic Drilling

Each company used different geochemical labs as well as various methods of quality control for the samples submitted for assaying. Table 11.3-1 summarizes the Assay Lab and number of samples sent to that specific lab.

Company	Date	Assay Laboratory	# Samples
Red Dog Mining (CF Millar)	1970**	Arizona Testing Laboratories	Inc. in ATL
			inventory
	1973 - 1975	Arizona Testing Laboratories	165*
	1980	Arizona Testing Laboratories	365*
	1981	Jacobs Assay Office	114*

Table 11.3-1 Summary of Assay Labs, Samples for Each Company

Page:	113

Date	Assay Laboratory	# Samples
1981	General Testing Laboratories	274*
1982	Unknown	92*
1983-1985	Unknown	85*
1987	Chemex – Core	353
	GD Resources Inc.	1655
1988	GD Resources Inc. – Sec 16	328
1989	Skyline	812
	1981 1982 1983-1985 1987 1988	1981General Testing Laboratories1982Unknown1983-1985Unknown1987Chemex – Core GD Resources Inc.1988GD Resources Inc. – Sec 16

*not complete inventory **Assayed in 1973-1975

Red Dog Mining sent drill samples to Arizona Testing Laboratories of Phoenix, Arizona for atomic absorption analysis for the following programs:

- 1. 1970s drilling around Gold Crown; holes F1-F35.
- 2. 1980s drilling in State Section 16; holes with the prefex BB. Assay certificates are available for 365 samples from holes BB1, BB13, BB14, BB15, BB16, BB17, BB2, BB4, BB6.
- 3. 1982 drill samples for holes F51 thru F83 drilled around Gold Dome. Assay certificates are not available for these samples. There is a record of typed results for some of the holes.

There is no record of included blanks, etc., nor mention of assay method used. Assay results were reported in oz/ton. Assay certificates are available for most holes.

There is also a record of fire assays received in 1981 from Jacobs Assay Office in Tucson. Poor copies of an assay certificate for Jacobs assays, and typed results with hole designations BB81- are available for these 114 analyses for holes BB81-7 thru BB81-16.

In 1981 Frisco's Land and Mining Company (FLMC) sent duplicate samples from the 1980s drilling to General Testing Laboratories (GTL) in Vancouver, BC for fire assay analysis. Assay certificates are available for 274 samples from 19 holes. Assay results were reported in oz/ton.

There is no record of who analyzed the samples for FLMC from the 1983-1985 drill programs.

In 1987 Gerle Gold/Mahogany Minerals JV's core and surface samples were sent to Chemex Labs Inc in Sparks, Nevada for analysis. Analytical methods are described above in Section 11.3.1 Surface Samples.

1987 – 1988 surface and reverse circulation samples were sent to GD Resources Inc of Sparks, Nevada for analysis. No additional information is available on the sample preparation or analytical technique utilized. No Certificates of Analysis are available. There is no historic reference to the number of samples sent to GD Resources for analysis. Sample IDs were included in the drill logs and assay values were recorded on cross-sections. 1983 assay values were entered into the data base from the drill logs, and sections.

In 1989, 812 drill samples (679 samples from Gold Dome; 133 samples from Granite Extension drilling) from the Mohave Mining Inc program, were sent to Skyline Labs in Tucson and a 30-gram portion of

each was fire assayed for gold and silver. All assays were fire assays of a 1 assay ton sample with gravimetric finish. Systematic check assays were done by Skyline (one check in every ten samples) and some samples were check assayed by Hazen Research in Golden, Colorado (Graham, Frisco Agreement, Frisco Property, Mohave County, Arizona, 1989). Certificates are available for all Skyline drill samples. Values were reported in Au oz/t and Ag oz/t. No information is available for the check assays sent to Skyline. Results of this comparison are discussed in Section 12.

11.3.3 Metallurgical Samples

Methodology for the historical metallurgical testing is discussed in Section 6 – History.

Methodology for 2015 metallurgical testing by Frisco Gold Corporation is discussed in detail in section 13 – Mineral Processing.

11.4 Summary Statement

Standards for different exploration companies related to sample preparation, analyses, and security have varied through time. While documentation of sample preparation, analysis, and security for the various companies that operated at the Frisco project prior to Frisco Gold Corporation is incomplete, all of the companies were reputable, well-known mining/exploration companies that likely followed the accepted industry standard protocols for drilling, sampling, logging, and analytical analyses.

All of the laboratories discussed above are (or were, since some are no longer in business) well-known commercial analytical laboratories that used industry-standard sample preparation and analytical techniques with assaying completed prior to the institution of formal certifications.

The author is of the opinion that the sampling methods, security, and analytical procedures used by the various operators of the Frisco project are adequate for mineral resource estimation. The relative lack of information concerning the historic drill sampling and analyses lowers the confidence in these data, although the work was conducted by reputable companies, and it is expected that the work was conducted using industry standard practices. The authors are not aware of any sampling or assaying factors that may materially impact the mineral resource estimate discussed in Section 14.0.

12 DATA VERIFICATION

Describe the steps taken by the qualified person to verify the data in the technical report, including

- (a) the data verification procedures applied by the qualified person;
- (b) any limitations on or failure to conduct such verification, and the reasons for any such limitations or failure; and
- (c) the qualified person's opinion on the adequacy of the data for the purposes used in the technical report.

The Frisco project mineral resource is based on data derived from holes drilled in the 1970s and 1980s. In consideration of the data summarized below, as well as information provided elsewhere in this report, the author believes the project data are acceptable for use in the resource estimations described in Section14.0.

The major contributors to the current Frisco project database include Red Dog Mining, Frisco Mining, Gerle Gold/Mahogany Minerals Resources and Ivernia West/Mohave Mining. While there are records that show Frisco Land & Mining and Mohave Mining instituted quality assurance/quality control ("QA/QC") programs, little useable data are available to review and comment on the results.

12.1 Database

In 2016, GeoGRAFX GIS Services scanned all paper files and created a digital archive of the information. GeoGRAFX was able to recover sufficient data to construct a digital database for modeling purposes. The drilling database which forms the basis for the resource estimation presented in this report, was compiled and digitized by GeoGRAFX in 2019. This original mine-site drill-hole information was then subjected to various verification measures, the primary one consisting of auditing of the digital data by comparing the drill-hole collar coordinates, hole orientations, and analytical information in the database against historical paper records in the possession of Frisco. Ms. Carroll audited the full drill hole data base and found no errors. While the digital database agrees with the paper copies, errors may exist in the original paper copies that have not been reported.

Discrepancies were observed with both drill hole ids and drill hole locations in the data set. These inconsistencies are discussed in detail in Section 14.

12.1.1 Hole names

Red Dog Mining 1980 series holes. On the boneli mine5.tif the holes are designated as B#. The drill logs and assay certificates show the hole designations to be BB#. Hole names were used interchangeably in the reports from that date.

Gerle Gold Section 16 holes. When holes were proposed in Section 16, they were given a designation A thru SSS as shown on location map granite extension ddh plan.tif. Once the holes were drilled, they were given a name reflecting the year drilled and hole sequence, ie 87-3 or year drilled and proposed letter designation, ie 87-W. The hole names were used interchangeably in reporting.

12.1.2 Hole locations

Gold Crown – plan maps showing hole locations for the 1972 drilling by Red Dog are available, however the survey points that were used to tie the locations to the Gerle Gold Local Mine Grid did not produce optimal results so the hole locations could not be reliably located.

Section 16 – several plan maps are available (boneli mine5.tif, granite extension ddh plan.tif and Frisco-Bonelli-1987a maps_20150511_004.jpg) that show hole locations for the 20 holes drilled in 1980 by Red Dog. Frisco-Bonelli-1987a maps_20150511_004.jpg shows several of the holes drilled in the 1980s located twice.

Granodiorite Pit – the sample location map (Sample Values Granodiorite Pit.jpg) could not be registered with Frisco-Bonelli-1987a maps_20150511_004.jpg using the 1983 drill hole locations included in the diagram.

Gold Dome - hole locations for the F, 85 and RC series holes prior to Gerle Gold maps and cross sections produced in May 1988 were incorrectly located. These were corrected on one set of maps, however the maps created by Mohave Mining included the incorrectly located holes.

Due to discrepancies in hole locations, it is recommended that a surveyor resurvey the questionable holes locations in both the Gold Dome and Granite/Granite Extension areas.

12.2 Drill Collar Field Check

Ms. Carroll conducted a field examination of the project area on June 6, 2019. During that visit, Ms. Carroll reviewed the geologic setting, inspected the mineralization that outcrops along the historic drill roads, and confirmed the location of a number of the historic drill holes. Drill holes in the vicinity of the Gold Dome deposit were difficult to locate as quite a few had been destroyed by subsequent mining. Time has taken its toll on the drill hole location information, as hole information was weathered beyond recognition on stakes that were located. A hand-held Garmin Montana 680T GPS receiver was used to check the locations of several historic drill sites in the Gold Dome area. While the hand-held GPS cannot achieve survey-level accuracy, it serves to verify that in general terms drill holes are where the database indicates they should be. No discrepancies in the locations of drill holes were identified during the site visit. Of the holes that were located, all were within 6-7 feet of the historic locations. Examples of drill holes located during the site visit are shown in Figures 12.2-1 and 12.2-2.

No drill holes were located in the Granite area although the drill pads are still visible.

Additional information regarding the drill hole collars is provided in Section 10.

12.3 Sample Integrity

No information was found regarding sample recovery for either Core, RC or air track drilling. Gerle Gold/Mahogany Minerals logs indicated that they encountered water during RC drilling in some of the holes and this might have affected the samples.

12.4 Check Analysis

It is difficult to assess the adequacy of historical drilling programs with respect to QA/QC procedures due to a lack of data. There is no record of standards or blanks included in the QA/QC analysis. Ms. Carroll compiled all the available historic check analyses from the various drill programs for review. Except for the samples sent by Mohave Minerals to Hazen, there are no definitive records that indicate the type of sample used for check assays.

There is no information available on QA/QC procedures used by Red Dog (with the exception of the 1980 samples), Frisco Land and Mining, or Gerle Gold on their drilling programs.

Copies of assay certificates are available for most drilling programs. No certificates are available for samples sent to GD Resources Inc in 1987-1988 by Gerle Gold Ltd.

Frisco Land and Mining sent duplicate samples from the 1980 drilling to Arizona Testing Laboratories of Phoenix, Arizona for atomic absorption analysis, the other to General Testing Laboratories (GTL) in Vancouver, BC for fire assay.

Mohave Mining sent systematic check assays to Skyline (one check in every ten samples) and some samples were check assayed by Hazen Research in Golden, Colorado.

Table 12.4-1 provides a summary of sample validation procedures for the historic drilling.

Company	Date	Laboratory	Assay Certificates	QA/QC Methodology
Red Dog Mining	1970			Holes assayed in 1974-1975
	1974-	Arizona Testing	Yes	No record of control samples
	1975	Laboratories (ATL)		found.
	1980	Arizona Testing	Yes	
		Laboratories (ATL)		
Frisco Land & Mining	1981	General Testing	Yes	Check on 1980 samples
Company		Laboratories (GTL)		
	1981	Jacobs Labs	Yes	
Frisco Land & Mining	1985	Arizona Testing		No record of control samples
Company		Laboratories		found.
Gerle	1987-	Core – Chemex	Yes	No record of control samples
Gold/Mahogany	1988	RC-GD Resources	No	found.
Minerals JV		Inc		
Mohave Minerals	1989	Skyline	Yes	check assays were done by Skyline
				(one check in every ten samples)
				and some samples were check
				assayed by Hazen Research

Table 12.4-1 Assay Labs Used and QA/QC Methodology

12.4.1 1980 Drilling

Samples of the percussion drill holes from the 1980 drilling were set to Arizona Testing laboratories (ATL) in Phoenix, AZ for atomic absorption analysis. 131 duplicate samples were sent to General Testing Laboratories (GTL) in Vancouver, BC for fire assay analysis.

The duplicate methods of assaying produced a discrepancy between the two assaying methods. Fire assaying yielded consistently higher values than atomic absorption. An inspection of the metallurgical results presented below indicates that the atomic absorption assays were done on the cyanide solution used to dissolve the gold in the solid sample. This assaying method resulted in values that were only 67% of the actual gold content (Campbell, 1981).

12.4.2 Mohave Minerals/Ivernia West PLC

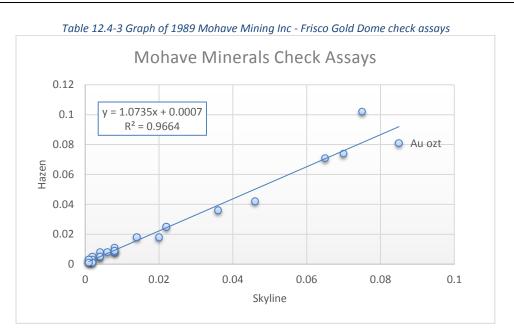
It was reported that systematic check assays were done by Skyline Labs, Inc in Tucson, Arizona (one check in every ten samples) and some samples were check assayed by Hazen Research in Golden, Colorado (Graham, 1989) however, no information is available for the check assays sent to Skyline.

As used in this report, the term 'duplicate' or 'repeat' is a generic name for any repeat assay measurement or a second sample of the same sample interval or location. Duplicate samples check on the quality of the sample collection, sample preparation and analytical precision. The inclusion of duplicate sample and their comparative analysis is essential in determining the level of precision, or reproducibility of the assay using a particular sampling method and analytical method.

Comparison samples of original Skyline assays were sent to Hazen for analysis of the same pulps by Hazen (Hazen 1) and assays of a new pulp from a different part of same sample (Hazen 2). Ms. Carroll

compared the gold grades in the 25 sample pairs from 3 holes. Pulp checks provide an additional check on the accuracy of the primary laboratory (Skyline). For the purpose of comparison, values less than detection limit (<.002) were set at 0.001. These results are presented in Table 12.4-3 and displayed in Table 12.4-4.

Hole No.	Interval	Original	Hazen 1	Hazen 2
GD 89-22	0-5	.008	.009	.008
	5-10	.075	.102	
	10-15	.070	.074	.066
	15-20	.085	.081	
	20-25	.046	.042	.040
GD 89-32	90-95	.004	.008	.008
	95-100	.006	.008	
	100-105	.020	.018	.024
	105-110	<.002	.002	
	110-115	<.002	.003	.004
	115-120	.002	.002	
	120-125	.008	.008	.008
	125-130	.014	.018	
	130-135	.002	.005	.004
	135-140	.008	.011	
	140-145	.004	.005	.003
	145-150	.008	.009	
	150-155	.002	.003	.006
	155-160	.065	.071	
	160-165	.036	.036	.036
GD 89-6	105-110	.022	.025	.016
	110-115	.002	<.002	
	115-120	.004	.005	.007
	120-125	<.002	.003	
	125-130	<.002	<.002	.007


Table 12.4-2 1989 Mohave Mining Inc - Frisco Gold Dome check assays

The simplest initial analysis is accomplished using an X - Y scatter plot to gain a general view of the repeatability of results and to identify obvious errors in samples; these can be generated both with normal axis and log axis. The normal scatter plot aptly demonstrates correlation above 1ppm, however due to the skew of the data set towards <1 ppm values the Log scatter plot is required to assess values at the lower grade end of the distribution.

When original and duplicates samples are plotted in a scatterplot, perfect analytical precision will plot on x=y (45°) slope. Core duplicates are expected to perform within $\pm 30\%$ of the x=y slope, coarse preparation duplicates should perform within $\pm 20\%$ of the x=y slope while pulp duplicates are expected to perform within $\pm 10\%$ of the x=y slope on a scatterplot.

R-squared is the coefficient of determination and a measure of the goodness-of-fit of the equation to the data. A perfect fit has a value of 1.000. In simple terms, R-squared*100 tells you the percentage of the variation of the y-variable due to the variation of the x-variable.

The check samples for the 1989 drilling were plotted against each other with a standard regression line and R₂ value for reference and are included as Table 12.4-3.

The results of the correlation show about a 96% correlation, well within acceptable limits for gold analysis.

12.5 Discussion of the QA/QC Program and Results

With the lack of information available on QA/QC procedures used by Red Dog (except for the 1980 samples), Frisco Land and Mining, or Gerle Gold on their drilling programs, the author cannot question the validity of the data.

Results for the comparison of 1980 Red Dog drilling's assay techniques show the results to be less for AA assaying using cyanide solution than those for fire assay. This is not unusual as the cyanide will not dissolve all of the gold as compared to fire assay.

Gerle Gold/Mahogany Minerals logs indicated that they encountered water during RC drilling in some of the holes.

There is good agreement between the Skyline vs Hazen check analysis by Mohave Minerals, indicating the repeat samples are essentially identical to those of the original analysis.

12.6 Independent Verification of Mineralization

During a site visit on June 6,2019 seven rock chip samples were collected by an independent company in the presence of the author and sent to Inspectorate America Corporation (an accredited ISO 9001 laboratory pursuant to NI 43-101) to confirm mineralization.

The rock chip samples were analyzed by Inspectorate Laboratories, Job Number REN19000270 utilizing the aqua regia digestion ICP-MS 36-element AQ200 analytical package with FA430 30-gram Fire Assay with AAS finish for gold on all samples. Table 12.6-1 include the sample descriptions; Table 12.6-2 shows selected analysis results, and Figure 12.6-1 displays gold values for the sample locations.

Sample No	WGS84E	WGS84N	Comments
3082753	735202.2	3899413	brecciated rhy with stockwork veinlets and silic.
3082754	735199.3	3899398	northern edge of small pit.
3082755	735170.3	3899372	top of gold dome, edge of mapped silicification.
3082756	735168.7	3899977	Gold Crown stope. Strong chaotic quartz veinlets, local colliform banding,
			local pale green quartz indicating sericite.
3082757	735188	3899947	Crystalline illite altered kraggy outcrops just above mineralized stopes.
3082758	735264.2	3898730	
3082759	734677.9	3898501	Actually a planned historic leach pad, with old liner underneath, common oxidized pyrite cubes.

Table 12.6-2 2019 Rock Chip Assay Results

Sample No	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Fe_pct	Hg_ppm	Pb_ppm	Sb_ppm	Zn_ppm
3082753	0.193	1.4	15	2.9	0.92	1.98	17.4	0.1	20
3082754	0.01	0.2	8.4	2.3	0.8	0.2	26.2	0.4	43
3082755	0.675	0.8	40.5	18.8	2.43	2.15	4.6	0.3	31
3082756	3.965	6.7	11.4	9.1	1.14	0.34	9	3.6	22
3082757	0.027	0.1	2.1	2.5	0.37	0.1	8.6	0.2	4
3082758	0.306	0.2	10.7	12	2.79	0.04	7.5	0.1	58
3082759	1.727	4.9	13.7	14.2	2.64	0.06	15.1	0.8	66

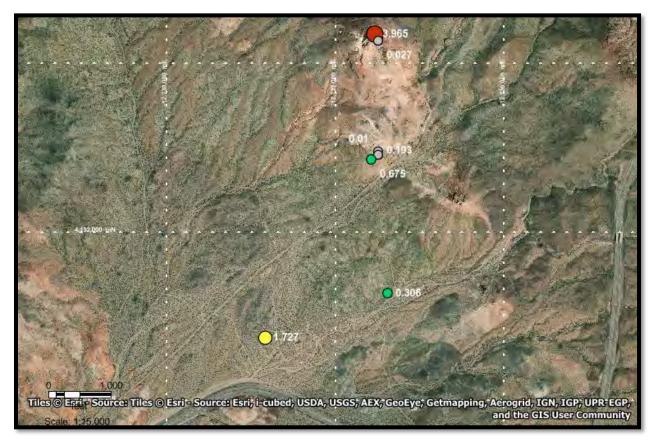


Figure 12.6-1 2019 Rock Chip Au Values

The author is satisfied with the adequacy of the sample preparation and security, and the procedures used in the collection of the seven samples during the site visit.

12.7 Summary Statement

Gerle Gold/Mahogany Minerals logs indicated that they encountered water during RC drilling in some of the holes and this might have affected the sample integrity.

Due to discrepancies in hole locations, it is recommended that a surveyor resurvey the questionable holes locations in both the Gold Dome and Granite/Granite Extension areas.

As there were duplicate hole locations for the 1980 drilling at the Granite deposit, Ms. Carroll recommends that the results of this drilling campaign be used for exploration purposes only and did not use the not use those holes in the resource estimate.

The comparison of 1980 Red Dog percussion drill holes assay techniques show that the results varied with assay technique. Fire Assaying is considered by the industry to be the most reliable method.

The author has reviewed the Frisco drill hole database, drill hole collar locations, check assay programs and considers the programs to provide adequate confidence in the data. In consideration of the information summarized in this and other sections of this report, the author has verified that the Frisco project data is acceptable as used in this report, most significantly to support the estimation of a mineral resource. The limitations on the verification of the project data were imposed by availability of historical records. For example, Frisco is not in the possession of assay certificates for the RC drilling in 1987-1988 by Gerle Gold/Mahogany Minerals JV or drill-hole logs for Mohave Minerals holes drilled in 1989, which precluded inclusion of this data in the project database.

13 MINERAL PROCESSING AND METALLURGICAL TESTING

Item 13: Mineral Processing and Metallurgical Testing- If mineral processing or metallurgical testing analyses have been carried out, discuss .

(a) the nature and extent of the testing and analytical procedures, and provide a summary of the relevant results;(b) the basis for any assumptions or predictions regarding recovery estimates;

(c) to the extent known, the degree to which the test samples are representative of the various types and styles of mineralization and the mineral deposit as a whole; and

(d) to the extent known, any processing factors or deleterious elements that could have a significant effect on potential economic extraction.

A pilot scale heap leach operation at Gold Dome was conducted in 1983-4 under the supervision of geologist Douglas Bonelli one of the family member shareholders of the corporation which owns the Frisco property. Gold recoveries of 70% were reported, but documentation is not available (Bonelli D., Metallurgy of Gold Dome Deposit).

In September 1987, Gerle Gold Ltd., who had optioned the Frisco property, commissioned McClelland Laboratories of Sparks, Nevada to conduct bottle roll tests on two samples of Granite deposit material ground to -200 mesh. The tests were conducted to determine recovery, recovery rate and reagent requirements. Both samples were readily amenable to direct cyanidation at a nominal -200 mesh feed size. Recoveries were 92.9% and 92.3% respectively for the two samples at the end of the 96 hour tests. Recovery was fairly rapid with 49% of the gold was recovered in 6 hours. Cyanide consumption was low for both samples and lime requirements were high. The 1987 McClelland Report is included in Appendix D.

In April 1988, Gerle Gold Ltd. commissioned Gary W. Hawthorne, P. Eng., of Vancouver, B.C., Canada, a Consulting Mineral Processing Engineer, to conduct leaching tests on selected samples of Frisco material from the Gold Dome, Gold Crown and Granite deposits. Most of the samples were tested for recovery of gold and silver by cyanide in bottle roll tests after grinding. Also included were tests of crushed material and bucket tests of un-crushed material. The results were mixed but Hawthorne concluded that finer crushing would be beneficial. The Hawthorne report is included in Appendix E.

Tri-R (Frisco Gold Corporation) submitted Gold Dome deposit material to McClelland Laboratories Inc. during May 2015 for bottle roll tests. Gold recovery after 96 hours of bottle roll testing was 49.9% for the -3/8 material and 63.9% recovery for the -1/4 inch material. McClelland opined that the results from column tests "would be markedly higher" as was the case for material from other properties in the area. The McClelland Report is included in Appendix F.

The material for the Tri R tests were taken from samples collected under the direct supervision of L. J. Bardswich, P.E., from exposures of the Quartz-Cemented Rhyolite (vitrophyre) Breccia (QCRB) present on the hill on the western portion of the Gold Dome deposit. The samples are believed to be representative of the predominant mineralization present in the Gold Dome deposit.

13.1 Conclusions

No deleterious materials or other complicating factors were identified during laboratory testing. Permeability and the absence of clays appears to be very suitable for heap leaching. The pilot scale test work supervised by Douglas Bonelli in the early 1980's indicate that a larger heap leach operation should be successful.

13.2 Recommendations

Additional column testing of Frisco material, from varying locations of the deposit e.g. surface vs depth, highly silicified vs low level of silicification, oxide vs sulfide should be performed to evaluate metallurgical variability and to confirm the representative nature of the bulk sample already tested. The leach time on the columns should be extended to determine if recoveries greater than 70% can be achieved without additional crushing. Additional samples should be provided to conduct column leach tests at additional crush sizes, including sizes coarser than 80%-1", to confirm the indicated optimum size, and to generate leached residue material for load/permeability testing. Load/permeability testing is recommended to confirm that the leached material is sufficiently permeable under simulated heap stack height compressive loadings. This test work will provide additional information to lower risk and enhance operating recoveries when production begins.

14 MINERAL RESOURCE ESTIMATE

A technical report disclosing mineral resources must

- a) provide sufficient discussion of the key assumptions, parameters and methods used to estimate the mineral resources for a reasonably informed reader to understand the basis for the estimate and how it was generated;
- b) comply with all disclosure requirements for mineral resources set out in the Instrument, including sections 2.2, 2.3 and 3.4;
- c) when the grade for a multiple commodity mineral resource is reported as metal or mineral equivalent, report the individual grade of each metal or mineral and the metal prices, recoveries, and any other relevant conversion factors used to estimate the metal or mineral equivalent grade; and
- d) include a general discussion on the extent to which the mineral resource estimates could be materially affected by any known environmental, permitting, legal, title, taxation, socio-economic, marketing, political or other relevant factors.

INSTRUCTIONS:

- 1) A statement of quantity and grade or quality is an estimate and should be rounded to reflect the fact that it is an approximation.
- 2) Where multiple cut-off grade scenarios are presented, the qualified person must identify and highlight the base case, or preferred scenario. All estimates resulting from each of the cut-off grade scenarios must meet the test of reasonable prospect of economic extraction.

14.1 Introduction

In April 2019, Frisco Gold Corporation (FGC), a private corporation incorporated in Arizona (under provisions of a sub-chapter S Corporation) commissioned Ms. Barbara Carroll, BSc, CPG to create an insitu resource estimate prepared according to the guidelines of a NI 43-101 report. The NI 43-101 technical reporting requirements used by the Canadian Securities Administrators have been recognized by securities exchange regulators for publicly traded securities around the world as a standard for mineral exploration and mining companies. While the technical report adheres to the same format of an NI-43-101 report, the company is not governed by the regulations of the Canadian Securities Administrators.

There are two resource areas considered in this report within the Frisco project; the Gold Dome Deposit on the Frisco patented claims, and the Granite Deposit on State Section 16. These 2 resources will be treated separately. The extracted database for Gold Dome contains 115 drill holes totaling 12,658 feet. The extracted database for Granite contains 33 drill holes totaling 7,699feet of drilling. Modeling and estimation of the mineral resources of the Frisco project were completed in 2019 by Barbara Carroll, CPG, a qualified person under NI 43-101. The effective date of the resource estimate is 11 July 2019. Ms. Carroll is independent of FGC by the definitions and criteria set forth in NI 43-10; there is no affiliation between Ms. Carroll and FGC except that of an independent consultant/client relationship. There are no Mineral Reserves estimated for the Frisco project as of the date of this report.

This report uses certain terms that comply with reporting standards in Canada and certain estimates are made in accordance with Canadian National Instrument NI 43-101 ("NI 43-101") and the Canadian Institute of Mining, Metallurgy and Petroleum ("CIM") - CIM Definition Standards on Mineral Resources and Mineral Reserves, adopted by the CIM Council, as amended (the "CIM Standards"). NI 43-101 is a rule developed by the Canadian Securities Administrators that establishes standards for all public disclosures an issuer makes of scientific and technical information concerning mineral projects. This

report uses the terms "resource," "measured and indicated mineral resource," and "inferred mineral resource." U.S. investors are advised that while these terms are defined in accordance with NI 43-101 such terms were not previously recognized under the SEC's Industry Guide 7 but as of October 31, 2018 SEC amendments detailed in Regulation S-K (Subpart 1300). are now permitted to be used in reports and registration statements filed with the SEC. Mineral resources in these categories have a great amount of uncertainty as to their economic and legal feasibility. "Inferred resources" have a great amount of uncertainty as to their existence and, under Canadian regulations, cannot form the basis of a prefeasibility or feasibility study, except in limited circumstances.

While the technical report adheres to the same format as NI-43-101 reports, the company is not governed by the regulations of the Canadian Securities Administrators, and no Government agency has expressed an opinion as to compliance of the report with 43-101 reporting standards.

This section describes the estimation methodology and summarizes the key assumptions considered by the author. In the opinion of the author, the mineralized material evaluation reported herein is a reasonable representation of the global gold mineralized material found in the Frisco Project at the current level of sampling. Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no certainty that all or any part of the mineralized material will be converted into a mineral reserve.

Three-dimensional model visualization was created using MapInfo/Discover/Discover3D software. MicroMODEL v9 was used for the geostatistical analysis and variography. Both are commercially available mining software systems that rely on a block modeling approach to represent the deposit as a series of 3-D blocks to which grade attributes, and virtually any other attributes can be assigned.

Although the author has extensive experience in the industry, she does not profess to be expert with respect to any of the following aspects of the project. The author is not aware of any unusual environmental, permitting, legal, title, taxation, socio-economic, marketing, or political factors that may materially affect the Frisco mineral resources as of the date of this report.

Any statements and opinions expressed in this document are given in good faith and in the belief that such statements and opinions are not false nor misleading as of the effective date of this report.

14.2 Database Used

The modeling and estimation utilized digital topography of the project area and the drill hole database compiled by GeoGRAFX GIS Services (Barbara Carroll, Principal).

Topographic data for the resource area was derived from detailed aerial mapping survey completed for Gerle Gold in 1987.

J.M. Kessler, Registered Arizona Land Surveyor and a U.S. Mineral Surveyor, established a Local Mine survey grid (LMG) on the property in May of 1987. In February 2015 Eric Stephan, a registered land surveyor with Cornerstone Land Surveying was contracted to survey the Frisco Mine patented claims in sections 9,15 & 16, t21N, R20W GSRM, Mohave County Arizona. This survey provided control points in

Arizona State Plane coordinates. Using the nine common control points from the 1987 and 2105 surveys listed in Table 14.2-1 Ms. Carroll was able to convert the historic local mine grid coordinates to State Plane Coordinates. Details of the 1987 and 2015 surveys are provided in Appendix G and H respectively.

Table 14.2-1 Fri	sco Control Points					
Easting_AZSP	Northing_AZSP	Easting_LMG	Northing_LMG	Elevation	ID	Note
497045.5	1527726.8	10000	10000	2626.77	7	SWCS16
497077.1338	1532990.72	9998.96	15265.49	2835.6	8	NWCS16
502573.805	1532296.497	15500.98	14608.27	3045.74	25	SEC Protection NEC King E
502365.8432	1532979.843	15288.29	15290.33	3042.13	26	NEC Sec 16
502232.6194	1533734.23	15149.92	16043.78	3167.43	28	SE Cor Standar
501231.1649	1533071.51	14153.14	15373.87	3066.99	36	claimpost site/gold crown
501310.1788	1532738.556	14233.74	15041.96	3016.07	39	Water Well
500171.4099	1535837.78	13074.26	18133.66	3179.58	80	NE Cor Dip Cla
499670.5275	1535507.457	12575.75	17799.73	3104.36	81	NW Cor Dip, NEC Watchman

The project coordinates for the Gold Dome resource, including topography, are in the local mine grid established by Kessler in 1987 using feet. The coordinate system was chosen to stay consistent with historic sections used in the resource.

There are two resource areas considered in this report within the Frisco project; the Gold Dome Deposit on the Frisco patented claims, and the Granite Deposit on State Section 16. These 2 resources will be treated separately. Drill holes from each resource area were imported into MapInfo/Discover databases. The extracted database for Gold Dome contains 115 drill holes totaling 12,658 feet. The extracted database for Granite contains 33 drill holes totaling 7,699 feet. The drill hole databases are summarized below in Table 14.2-2

	Fr	isco Patented Claims Gold Dome	State Section 16 Granite				
Drill Type	Holes	Feet	Holes	Feet			
Percussion	36	2,155					
Reverse	66	8,782	31	7,420			
Circulation							
Core	2	636	2	279			
Rotary Air-Blast	11	1,085					
TOTAL	115	12,658	33	7,699			

Table 14.2-2 Resource Drill Hole Summary

All the drill hole data was used in developing the resource model for the Gold Dome deposit within the outlined area specified in 14.5.7. Drill hole information from 1987-1989 was used to create the resource model for the Granite deposit. The collar information on these holes used in both resources is included in Appendix I.

Industry standard validation checks of the database were carried out with minor corrections made where necessary. The database was interrogated for inconsistencies in naming conventions or analytical units, duplicate entries, interval, length or distance values less than or equal to zero, blank or zero-value assay results, out-of-sequence intervals, intervals or distances greater than the reported drill hole length, inappropriate collar locations, and missing interval and coordinate fields. No significant discrepancies with the data were noted.

14.3 Density Assignment

No specific gravity measurements were available for either the Frisco or Granite deposits. Both the 1988 (Irving, 1988) and 1989 (Graham, 1989) resource used 13 cubic feet per ton as a tonnage factor and Flesher used 11.6 (Flesher, 2015). Golden Vertex's Moss Mine, approximately 10 miles from the property, with similar mineralization established dry bulk densities are based on 506 specific gravity measurements. A dry bulk density of 2.51 g/cm₃ was used for material with a depth less than 12 m from surface. A dry bulk density of 2.58 g/cm₃ was used for all other material (Stone, Thomas, Kilby, & Brownlee, 2014). A dry bulk density of 2.58 g/cc converts to 12.42 cubic feet per ton.

Based mainly on the Moss Mine calculations, the author used a density factor of 12.5 cu. ft./ton to convert volume to short tons in its Mineral Resource estimates and strongly recommends that specific gravity measurements be taken during next drilling campaign, or metallurgical testing.

14.4 Classification of Mineral Resources

The authors classified resources in order of increasing geological and quantitative confidence into Inferred, Indicated, and Measured categories to be in compliance with the "CIM Definition Standards - For Mineral Resources and Mineral Reserves" (2010) and therefore Canadian National Instrument 43-101. CIM mineral resource definitions are given below:

Mineral Resource

Mineral Resources are sub-divided, in order of increasing geological confidence, into Inferred, Indicated and Measured categories. An Inferred Mineral Resource has a lower level of confidence than that applied to an Indicated Mineral Resource. An Indicated Mineral Resource has a higher level of confidence than an Inferred Mineral Resource but has a lower level of confidence than a Measured Mineral Resource.

A Mineral Resource is a concentration or occurrence of diamonds, natural solid inorganic material, or natural solid fossilized organic material including base and precious metals, coal, and industrial minerals in or on the Earth's crust in such form and quantity and of such a grade or quality that it has reasonable prospects for economic extraction. The location, quantity, grade, geological characteristics and continuity of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge.

The term Mineral Resource covers mineralization and natural material of intrinsic economic interest which has been identified and estimated through exploration and sampling and within which Mineral Reserves may subsequently be defined by the consideration and application of technical, economic, legal, environmental, socio-economic and governmental factors. The phrase 'reasonable prospects for economic extraction' implies a judgement by the Qualified Person in respect of the technical and economic factors likely to influence the prospect of economic extraction. A Mineral Resource is an inventory of mineralization that under realistically assumed and justifiable technical and economic conditions might become economically extractable. These assumptions must be presented explicitly in both public and technical reports.

Inferred Mineral Resource

An 'Inferred Mineral Resource' is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes.

Due to the uncertainty that may be attached to Inferred Mineral Resources, it cannot be assumed that all or any part of an Inferred Mineral Resource will be upgraded to an Indicated or Measured Mineral Resource as a result of continued exploration. Confidence in the estimate is insufficient to allow the meaningful application of technical and economic parameters or to enable an evaluation of economic viability worthy of public disclosure. Inferred Mineral Resources must be excluded from estimates forming the basis of feasibility or other economic studies.

Indicated Mineral Resource

An 'Indicated Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed.

Mineralization may be classified as an Indicated Mineral Resource by the Qualified Person when the nature, quality, quantity and distribution of data are such as to allow confident interpretation of the geological framework and to reasonably assume the continuity of mineralization. The Qualified Person must recognize the importance of the Indicated Mineral Resource category to the advancement of the feasibility of the project. An Indicated Mineral Resource estimate is of sufficient quality to support a Preliminary Feasibility Study which can serve as the basis for major development decisions.

Measured Mineral Resource

A 'Measured Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate application of technical and economic parameters, to support production planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration, sampling and testing information gathered through

appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough to confirm both geological and grade continuity.

Mineralization or other natural material of economic interest may be classified as a Measured Mineral Resource by the Qualified Person when the nature, quality, quantity and distribution of data are such that the tonnage and grade of the mineralization can be estimated to within close limits and that variation from the estimate would not significantly affect potential economic viability. This category requires a high level of confidence in, and understanding of, the geology and controls of the mineral deposit.

14.5 Gold Dome Deposit

14.5.1 Sampling Intervals, Composites

The preponderance of samples for all drill programs of all operators were taken at 5-foot intervals, which is customary for RC drilling, and is significantly less than the thickness of the bulk-tonnage style of mineralization at Frisco-Gold Dome. Each drill sample interval is therefore a fraction of the true thickness of the mineralized zones.

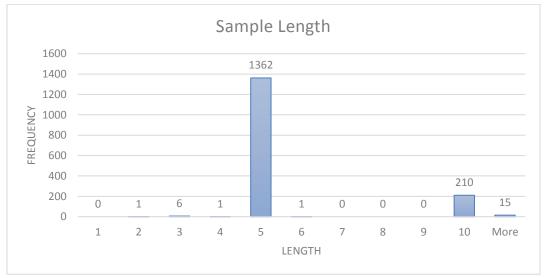


Figure 14-1 Histogram of Sample Intervals for Gold Dome

Table 14.5-1 Sample Intervals Descriptive Statistics for Gold Dome												
Mean	Standard	Media	Mode		Sample	Kurtosis	Skewnes	Range	Minimum	Maximum	Sum	Count
	Error	n		Deviation	Variance		S					
5.970	0.0991	5	5	3.9596	15.678	109.620	9.3363	63	2	65	9529	1596

The predominant sample length for the drill intervals in the Gold Dome database is five feet (1,362 samples out of 1,596 – 85%) with a relatively small percentage of shorter or longer intervals. These values were used to estimate the grade of the blocks. The modeling method used considers the length of samples in estimating grade for a block, therefore no compositing of samples was considered necessary.

14.5.2 Grade Distribution

The grade histogram is used to study the relationship between the statistical grade distribution and geologic parameters. If the histogram is bell shaped and symmetrical, a normal distribution is indicated. If a histogram is skewed to the right so that the high-grade side of the histogram is larger than the low-grade side, a lognormal distribution is indicated. Normal distributions are not usually found in mineral deposits except for those that are very continuous and have low variability. Lognormal distributions, or combinations of lognormal distributions are common in mineral deposits (Darling, 2011).

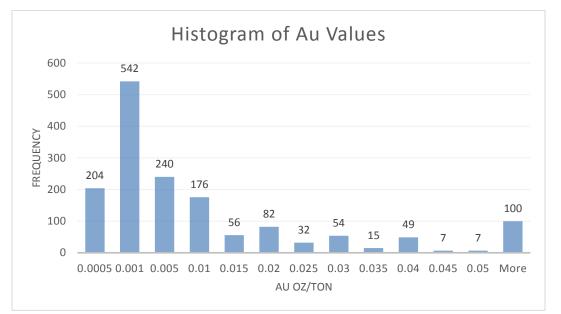


Figure 14-2 Histograms of Gold Dome assay samples showing gold grade distribution.

Tak	Table 14.5-2 Statistics for Gold Dome gold values above detection limit												
Mea	in	Standard Error	Media n	Mode	Standard Deviation	Sample Variance	Kurtosis	Skewnes s	Range	Minimum	Maximum	Sum	Count
0.0	13	0.0008	0.002	0.001	0.03153	0.0010	216.230	10.848	0.765	0	0.765	20.01	1564

The grades of the Gold Dome Au values from the drill hole samples shows a right skew with a tail on the right side, indicating a lognormal distribution of the data, as well as the presence of high values. 32 records had values of -999 (missing) and were eliminated from the data set. NIL values were set to 0, TRACE values and values less than detection limit were set to an arbitrary value of half that value.

Figure 14.4-2 below shows the logAu values of the assay data. 75 records had values of -999 or NIL and were eliminated from the data set.

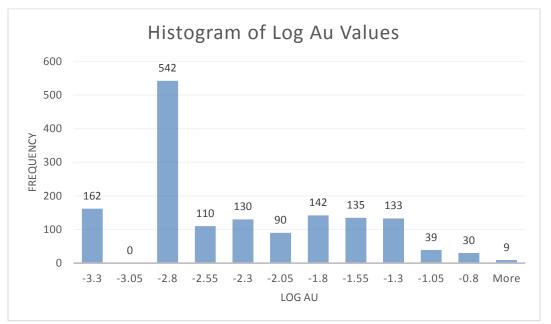


Figure 14-3 Histogram of Gold Dome LogAu values of assay data.

The plot indicates that multiple populations present are most likely present in this data set. The abnormal stacking of data to the left is due to values below detection set to an arbitrary value of half the detection limit.

14.5.3 Capping of Assays

The first task in dealing with extreme values is to determine the validity of the data, that is, to confirm that the assay values are free of errors related to sample preparation, handling, and measurement. If the sample is found to be erroneous, then the drill core interval should be re-sampled, or the sample should be removed from the assay database. Representativeness of the sample selection may also be confirmed if the interval is re-sampled; this is particularly relevant to coarse gold and diamond projects. If the sample is deemed to be free of errors (excluding inherent sample error), then it should remain in the resource database and subsequent treatment of this data may be warranted (LEUANGTHONG).

Grade capping is the practice for replacing any statistical outliers with a maximum value from the assumed sampled distribution. This is done statistically to better understand the true mean of the sample population. The estimation of highly skewed grade distribution can be sensitive to the presence of even a few extreme values.

Two primary reasons for capping high-grade samples are: (1) there is suspicion that uncapped grades may overstate the true average grade of a deposit; and (2) there is potential to overestimate block grades in the vicinity of these high-grade samples. Whyte (2012) presented a regulator's perspective on grade capping in mineral resource evaluation and suggested that the prevention of overestimation is good motivation to consider grade capping. For these reasons, capping has become a 'better-safe-thansorry' practice in the mining industry, and grade capping is done on almost all mineral resource models. Another method is to limit the spatial influence of high-grade samples. Currently, a few commercial general mining packages offer the option to restrict the influence of high-grade samples. That influence

is specified by the design of a search ellipsoid with dimensions smaller than that applied for grade estimation. This has the advantage of including valid high-grade assays, while limiting their sphere of influence.

The graph below displays a cumulative frequency diagram of the logAu sample values for the Gold Dome drill holes. Often the probability graph will not be a straight line but will be composed of multiple straight lines or curves. A typical deviation from a straight line is a downward curve at the low end of the graph. This curve represents excess low-grade samples, or values below detection limit. Another common deviation from a straight line on the probability plot is a steeper slope at the upper end of the curve. This represents excess material in the high-grade population and may be caused by two superimposed populations, such as high-grade veins within lower grade disseminated or stockwork mineralization. Other causes of excess high-grade assays include small zones of material that is highly favorable to mineralization because of higher permeability, favorable chemical properties, secondary enrichment or metamorphic remobilization. Since the high-grade samples are usually capped to prevent overestimation of the grade of the resource, or restrictions on the search distances of higher-grade values can be applied during grade interpolations. If the high-grade samples show sufficient continuity to define a continuous volume, a separate high-grade domain may be defined and estimated separately from the lower mineralization (Darling, 2011).

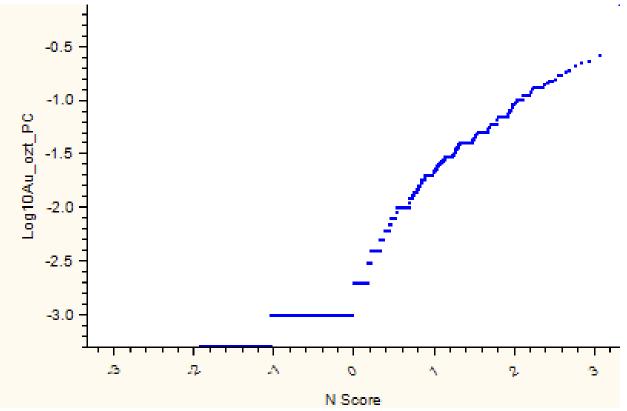


Figure 14-4 Gold Dome LogAu Cumulative Frequency plot.

Reviewing the data and Figure 14.5-1 above, there is one outlier at 0.765 Au oz/ton that is significantly higher than the other values which seem to taper off at 0.2x. The value was taken from handwritten drill log information and no certificate is available for the sample. The surrounding lithology is mineralized but not to the extent of this sample and shows elevated Ag values as well. For the purpose of the resource, this value will be set 0.26 to not overestimate the resource grade at that location.

14.5.4 Lithology

Geologic information from the historic drill logs was entered by GeoGRAFX into the database to assist in the development of the geologic model. 30 of the 115 holes contained lithologic information.29 of the holes had associated lithology logs. 1 additional hole with lithologic contacts were entered from section. A total of 201 lithology values were entered into the data set. There were 24 distinct lithologic units mapped in the logs. These are shown in Figure 14.7-1 below. As less than half of the holes contained lithologic information, it is the opinion of the author that there are not sufficient values to enable lithology to be used to classify domains for the resource estimate.

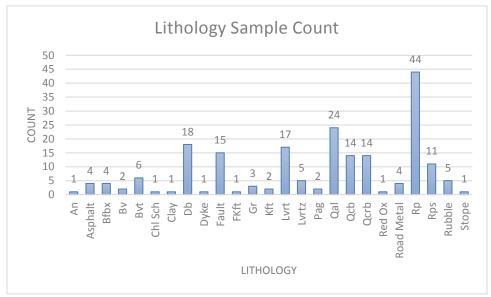


Figure 14-5 Histogram of Lithologies Showing Sample Count.

14.5.5 Geological Interpretation and Modeling

Insufficient information was available to include lithology in modeling or resource estimation. Historical interpreted sections for Gold Dome were created by both Gerle Gold in 1987-1988 and Mohave Mining in 1989. Both companies incorporated the incorrectly located F series holes in the sections.

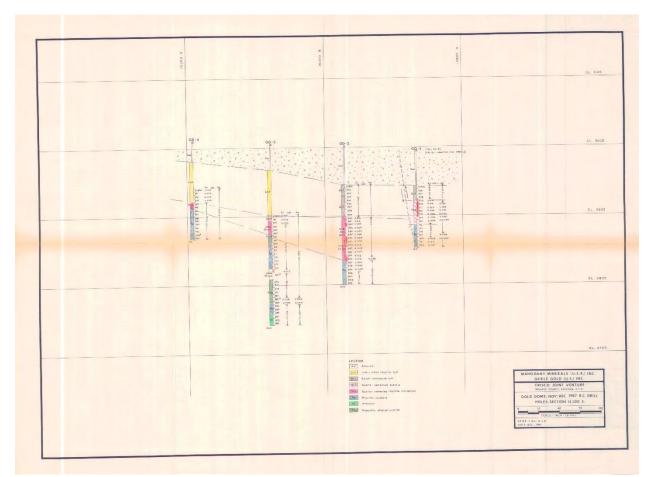


Figure 14-6 Gold Dome Section 14,300 E Gerle Gold

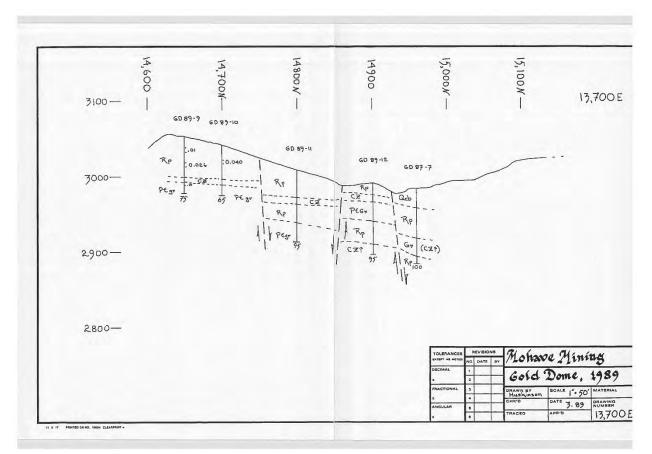


Figure 14-7 Gold Dome Section 13,700 E Mohave Mining

It is recommended that the sections be recreated and reinterpreted with the corrected hole locations and those sections used as a base to create a geologic model for the deposit.

14.5.6 Spatial Analysis

Variography analysis using MicroMODEL software was completed to establish spatial variability of gold values in the deposit.

Variograms are used to measure the spatial continuity between data points. The objectives of the variography were to establish the directions of major grade continuity and to provide variogram model parameters for use in geostatistical grade interpolation.

Variography establishes the appropriate contribution that any specific composite should have when estimating a block volume value within a model. This is performed by comparing the orientation and distance used in the estimation to the variability of other samples of similar relative direction and distance.

The degree of spatial variability and continuity in a mineral deposit depends on both the distance and direction between points of comparison. Typically, the variability between samples is proportional to the distance between samples. If the variability is related to the direction of comparison, then the deposit is said to exhibit *anisotropic* tendencies, which can be summarized by an ellipse fitted to the

ranges in the different directions. The semi-variogram is a common function used to measure spatial variability within a deposit.

The components of the variogram include the nugget, the sill and the range. Samples compared over very short distances (including samples from the same location) typically show some degree of variability. As a result, the curve of the variogram begins at a point on the y-axis above the origin a point called the *nugget*. The nugget is a measure of not only the natural variability of the data over very short distances, but also a measure of the variability that can be introduced due to errors during sample collection, preparation and assaying.

Typically, the amount of variability between samples increases as the distance between the samples increases. Eventually, the degree of variability between samples reaches a constant or maximum value - this is called the *sill and* the distance between samples at which this occurs is called the *range*.

Ms. Carroll constructed variograms to test grade continuity in several different orientations. They demonstrate a continuity of 40 ft. in the horizontal direction and 28 ft. downhole. Preliminary omnidirectional and down hole variograms on sample data of the Au values are shown below.

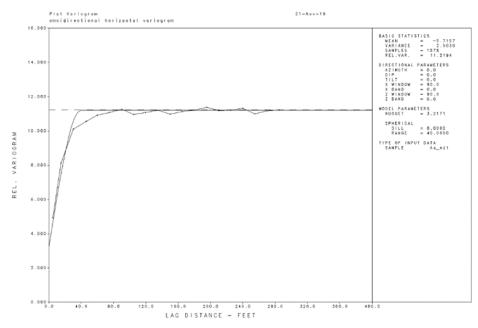


Figure 14-8 Omnidirectional Horizontal Variogram

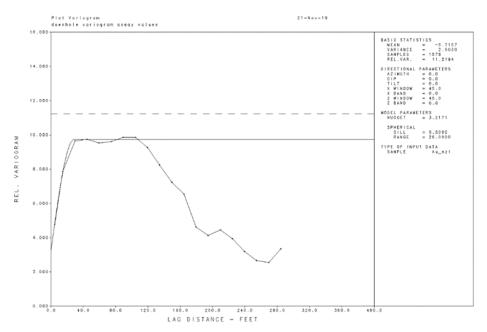


Figure 14-9 Vertical Variogram

These parameters are larger than the numbers used in the historic or check resource and may serve to enhance the overall resource.

14.5.7 Block Model Geometry

Ms. Carroll created a three-dimensional ("3D") block model using MapInfo/Discover 3D mining software. The block model was oriented north-south. The model was created with individual block dimensions of 15 x 15 x 15 ft (xyz).

The model origin is located at 14290 east, 14890 north, and at an elevation of 3080 ft above sea level. The block model extends 1785 ft (119 blocks) in the easting direction, 1155 ft (77 blocks) in the northing direction, and vertically 450 ft (30 blocks). All block model coordinates for the Gold Dome resource are stored in Local Mine Grid established by J.M. Kessler in 1987 using feet. The coordinate system was chosen to stay consistent with historic sections used in the resource. The coordinate limits of the model are shown in Table 14.11-1 and shown in Figure 14.5-10.

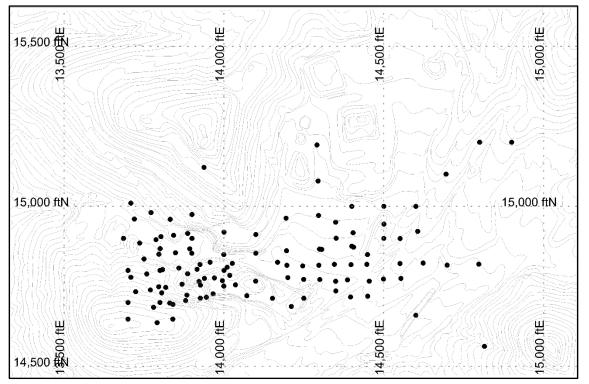


Figure 14-10 Drill Hole Locations for Gold Dome Resource

The project coordinates for the Gold Dome resource, including topography, are in the local mine grid established by Kessler in 1987 using feet.

3D Block Model Limits	Minimum	Maximum	Number of Blocks	Block Size	Dimensions Ft
Easting	13329	15114	119	15	1785
Northing	14465	15620	77	15	1155
Elevation	2680	3130	30	15	450

Table 14.5-3 Gold Dome 3D Block Model Limits

The extracted drill hole database shown in Table 14.11-2 contains 115 known collar locations and 1,597 assay records, broken down by drilling type as:

Table 14.5-4 Gold Dome Drill H	lole Summary sorted by Compan	У

Company	Number of Holes	Length	Туре
Red Dog Mining	36	2,155	Air track
Frisco Mining	11	1,085	Air track
Gerle Gold JV	2	636	Core
	29	4,160	Reverse Circulation
Mohave Mining	37	4,622	Reverse Circulation

All of the Gold Dome sample data was used in developing the geologic and resource models.

14.5.8 Grade Interpolation

Ms. Carroll assumed that the areas within the model were part of the resource, and therefore a primary aim of the interpolation was to fill the blocks within these models with grade. The parameters used to calculate the resource are described in Table 14.12-1 and shown in Figure 14.12-1.

The block model grades for gold were estimated using inverse distance squared. A search ellipse of 65 x 65 x 15 feet was used to constrain the inferred resource. The number of samples used to interpolate a block grade was set at a minimum of 1 and a maximum of 16. Values with 0 were assigned as missing Null values set to -1.0e32.

Drill Holes:	Total of 115 drill holes totaling 12,658 feet		
	and 1,597 assay values were used to build the resource model		
Composites:	No sample compositing. 86% of samples are 5 feet in length within the Gold Dome		
	deposit were used to assign values to the blocks in the resource		
Average Grade:	Gold: 0.013 oz/t (0.000 oz/t – 0.765 oz/t)		
Capping:	0.765 was set to 0.26.		
Tonnage Factor:	12.5 cu. ft./ton		
Interpolation	Inverse Distance squared (ID2)		
Method:	Minimum of 1 and maximum of 16 samples to use		
Block Model:	Model Origin (X, Y, Z): (14290, 14890, 3080), no rotation		
	Column Size 15 feet, 119 columns		
	Row size 15 feet, 77 rows		
	Level size 15 feet, 30 Levels		
Search Ellipse:	Bearing:0, Inclination: 0, Tilt:0		
	Inferred Resource - X – 85', Y – 85', Z – 15'		

Table 14.5-5 Block Model	parameters used to	calculate the	Gold Dome Resource

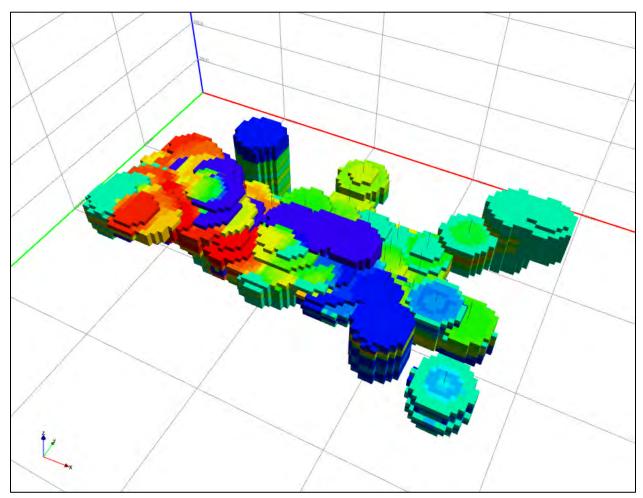


Figure 14-11 Gold Dome block model using 85x85x15 search parameters.

14.5.9 Gold Dome Resource

Inverse Distance Squared method was used for the Discover3D voxel calculations for an in-situ resource. The parameters used are listed above. These numbers should be considered mathematical estimates only. Geology was not considered as part of the estimate; a more robust estimate would be obtained if the underlying geology and structure were considered.

Figure 14.13-1 shows the block model shown for the Gold Dome resource. It shows Au values greater than the .0123 Au oz/ton cutoff for an 85' search radius. Each block is 15' x 15' x 15'.

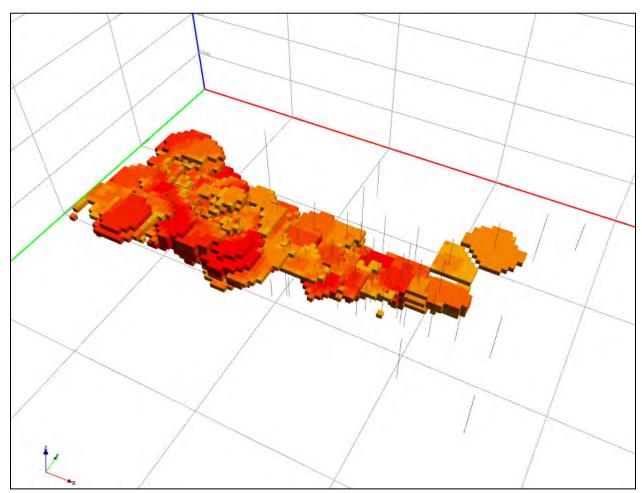


Figure 14-12 3D Block Model for Gold Dome showing values > .0123 Au oz/ton.

14.5.9.1 Sectional Inspection

Cross-sections comparing assay grade are shown in Figures 14.13-2 thru 14.13-3.

Figure 14-13 Visual Comparison of Assay vs Block Grade, 13,700E

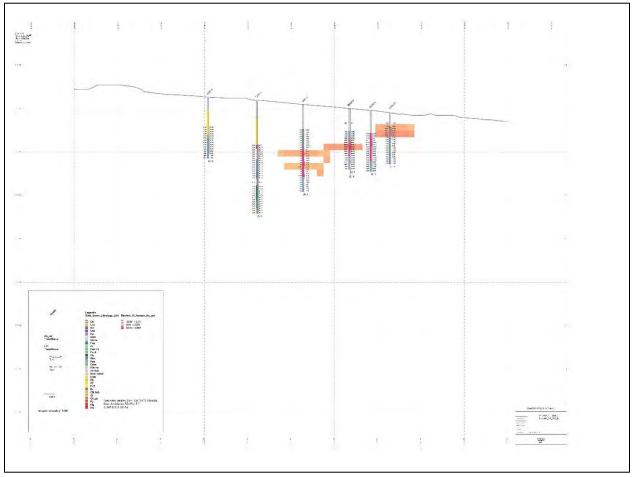


Figure 14-14 Visual Comparison of Assay vs Block Grade, 14,300E

The block grades were visually compared to the assay grades on section. The visual inspection appeared to be reasonable. In Ms. Carroll's view, the Gold Dome deposit block model is valid, reasonable and appropriate for Mineral Resource estimation.

14.5.10Cut-Off Grade

Because of the requirement that the resource exists "in such form and quantity and of such a grade or quality that it has reasonable prospects for economic extraction", the author is reporting the resources at cutoffs that are reasonable for deposits of this nature and for the expected mining conditions and methods. The cutoffs were chosen to capture mineralization potentially available to open-pit extraction and heap-leach processing, which the authors believe is adequately supported by the metallurgical data provided in Section13.0.

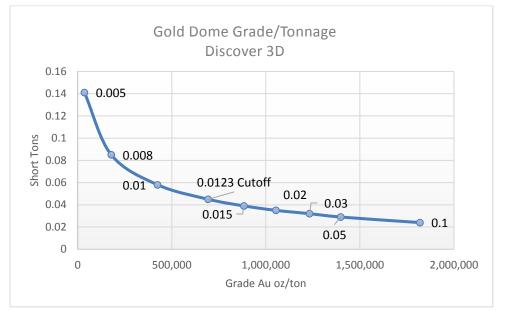
For the purposes of reporting the 2019 Mineral Resource, the author has estimated a cut-off grade based on the approximate average price of gold, estimated operating costs and expected gold recovery as follows:

• Gold price assumed to be US\$1295/oz using the average price of gold (London PM Fix) over the past three years.

- Total mine, leach and recovery costs/ton of US\$12.75 provided by Joe Bardswich, PE (Bardswich L. J., 2019), based on mining cost, crushing & stacking costs and leaching costs using carbon adsorption (\$10.25 per ton to mine, crush and stack ore on the leach pad; Leaching costs, including carbon recovery are estimated to be \$2.50 per ton).
- Gold recovery of 80% based on previous recovery (Bonelli D., Metallurgy of Gold Dome Deposit)

Cut-off=operating cost/(price*recovery) = US\$12.75/(US\$1295*0.80) = 0.0123 oz/ton.

The author recommends that a cut-off grade of 0.0123 Au oz/ton be used to report Mineral Resources for Gold Dome. This cutoff was chosen to capture mineralization potentially available to open-pit extraction and heap-leach processing.


The author notes that the data used is preliminary at this time and that the cut-off grade may be refined as economic parameters change and additional work is completed on both the Gold Dome and Granite deposits.

14.5.11 Grade Tonnage

The Gold Dome mineral resources are listed in Table 14.15-1, using various cutoff grades. These block-diluted resources are presented in order to provide grade-distribution information, as well as to provide for economic conditions other than those envisioned by the 0.0123 oz Au/ton cutoff. Values are based on in-situ values.

Cutoff (oz Au/ton)	Volume ft3	Tons	Grade Au Oz/ton	Oz Au
0.0050	22,740,750	1,819,260	0.024	43,662
0.0080	17,482,500	1,398,600	0.029	40,559
0.0100	15,413,625	1,233,090	0.032	39,459
0.0123	13,172,625	1,053,810	0.035	36,883
0.0150	11,053,125	884,250	0.039	34,486
0.0200	8,673,750	693,900	0.045	31,226
0.0300	5,312,250	424,980	0.058	24,649
0.0500	2,230,875	178,470	0.085	15,170
0.1000	448,875	35,910	0.141	5,063

Table 14.5-6 2019 Gold Dome in-situ Tonnage/Grade values for varying cutoffs

Figure 14-15 Gold Dome Grade/Tonnage curve for in-situ resource.

14.5.12 Resource Classification

The Gold Dome resources are classified on the basis of the number and distance of assays used in the interpolation of a block gold grade, as well as the number of holes that contributed values to the interpolation. These distances were based on semi-variogram analysis of the Au sample data. The following criteria were used for classifying the resource:

- In order for blocks to be considered as a Measured Resource, a minimum of two drillholes were required within a drill data spacing of 40 feet.
- In order for blocks to be considered as an Indicated Resource, a minimum of one drillhole was required within a drill data spacing of 40 feet.
- In order for blocks to be considered as an Inferred Resource, represented by material estimated by one drillhole at a distance less than 85 feet from source data, and may not be considered as either measured or indicated resource.

Currently, there are Indicated and Inferred resources within the Gold Dome. In Ms. Carroll's opinion, even though blocks meet the classification requirement for a Measured Resource stated above, none of the resource is classified as Measured at this time due to limited geologic data. Measured blocks are included in the Indicated classification. Table14.16-1 lists the Gold Dome Indicated and Inferred mineral resource at a 0.0123 of cut-off grade.

Table 14.5-7 2018 Gold Dome in-situ classification of Tonnage/Grade values for 0.0123 cutoff

Classification	Inferred		, e	Indicated (Measured+Indicated blocks)		
Cutoff	Tons Grade Oz Au			Tons	Grade	Oz Au
0.0123	369,630	0.037	13,676	662,310	0.036	23,843
Notes:				•		

1. The definitions of indicated and inferred mineral resources reported here are as defined in the CIM Standards on Mineral Resources and Mineral Reserves adopted by the CIM Council, as amended.

2. Inferred resource estimates have a great amount of uncertainty as to their existence and economic feasibility. There is no certainty that all or any part of an inferred mineral resource will ever be upgraded from an inferred resource to an indicated resource

category. Estimates of inferred mineral resources may not form the basis of a feasibility or pre-feasibility study but may be used in connection with a preliminary economic assessment.

Tonnage and grades are in imperial units (feet, troy ounces and short tons). Contained gold ounces are reported as troy ounces.
 Block grades for gold were estimated from assay samples using inverse distance squared (IDS) interpolation into 15x15x15 ft blocks.

5. Maximum search distances used to calculate indicated resources are 40ft, while inferred resources were calculated using maximum distances of 85ft from the block being estimated.

6. The contained gold figures shown are in situ. No assurance can be given that the estimated quantities will be produced.

7. Mineral resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add due to rounding.

Figure 14.5-2 shows an example of the resource classification for Gold Dome of blocks above the 0.0123 Au oz/ton cutoff. Inferred classification is shown in green and Indicated classification shown in yellow.

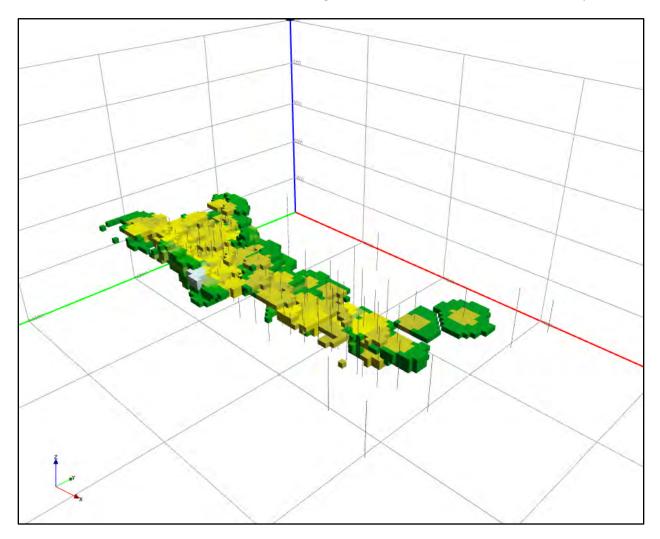


Figure 14-16 Resource classification for Gold Dome

14.6 Granite Deposit

Drill hole information from Gerle Gold in 1987-1988 was used to create the resource model for the Granite deposit. Gerle Gold drilled 33 holes total; 2 core holes, 31 reverse circulation holes. Results from the 1980 Red Dog drilling in the Granite area were not used in the resource calculation.

14.6.1 Sampling Intervals, Composites

The preponderance of assay samples for all drill programs of all operators were taken at 5-foot intervals, which is customary for RC drilling, and is significantly less than the thickness of the bulk-tonnage style of mineralization at Frisco-Granite. Each drill sample interval is therefore a fraction of the true thickness of the mineralized zones.

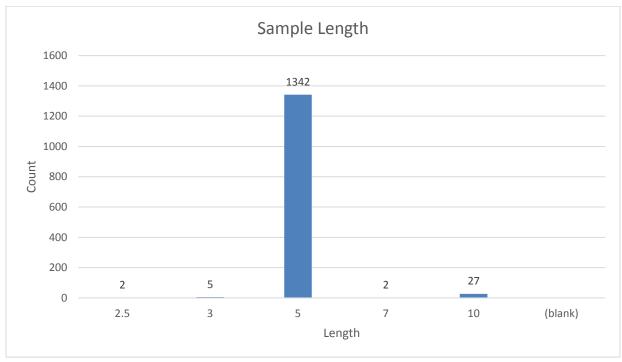


Figure 14-17 Histogram of Sample Intervals for Granite

Table 1	Table 14.6-1 Sample Intervals Descriptive Statistics for Granite											
Mean	Standard	Median	Mo	Standard	Sample	Kurtosis	Skewnes	Range	Minimum	Maximum	Sum	Count
	Error		de	Deviation	Variance							
5.0899	0.019266	5	5	0.715195	0.51150	41.33234	6.21975	7.5	2.5	10	7014	1378

The predominant sample length for the drill intervals in the Granite database is five feet (1,342 samples out of 1,378 - 97%) with a relatively small percentage of shorter or longer intervals. These values were used to estimate the grade of the blocks. The modeling method used considers the length of samples in estimating grade for a block, therefore no compositing of samples was considered necessary.

14.6.2 Grade Distribution

The grade histogram is used to study the relationship between the statistical grade distribution and geologic parameters. If the histogram is bell shaped and symmetrical, a normal distribution is indicated. If a histogram is skewed to the right so that the high-grade side of the histogram is larger than the low-grade side, a lognormal distribution is indicated. Normal distributions are not usually found in mineral deposits except for those that are very continuous and have low variability. Lognormal distributions, or combinations of lognormal distributions are common in mineral deposits (Darling, 2011).

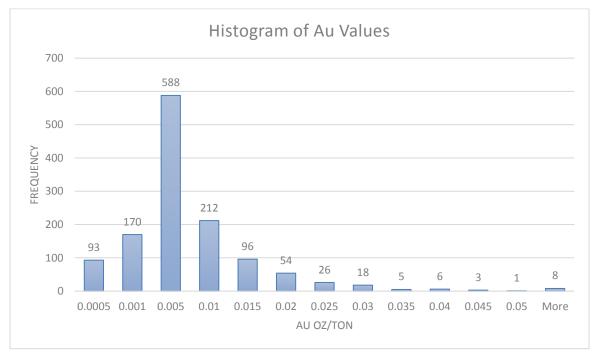


Figure 14-18 Histograms of Granite assay samples showing gold grade distribution.

Table 14.6-2 Statistics for Granite gold values above detection limit

Field	Count_n	CountValid	CountInvalid	Minimum	Maximum	Mean	Median	Range	Variance
Au_oz/ton	1399	1301	98	0	0.481	0.0063	0.0020	0.481	0.0003
StdDev	Skewness	Kurtosis							
0.0164	20.2954	554.4782							

The grades of the Granite Au values from the drill hole samples shows a right skew with a tail on the right side, indicating a lognormal distribution of the data, as well as the presence of high values. 98 records had values of -999 (missing) and were eliminated from the data set. Values less than detection limit were set to an arbitrary value of half that value.

Figure 14.5-3 below shows the logAu values of the assay data. 98 records had values of -999 and were eliminated from the data set.

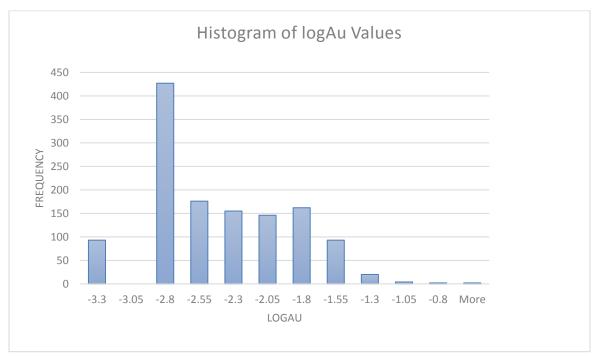


Figure 14-19 Histogram of Granite LogAu values of assay data.

The plot indicates that multiple populations present are most likely present in this data set. The abnormal stacking of data to the left is due to values below detection set to an arbitrary value of half the detection limit.

14.6.3 Capping of Assays

The first task in dealing with extreme values is to determine the validity of the data, that is, to confirm that the assay values are free of errors related to sample preparation, handling, and measurement. If the sample is found to be erroneous, then the drill core interval should be re-sampled, or the sample should be removed from the assay database. Representativeness of the sample selection may also be confirmed if the interval is re-sampled; this is particularly relevant to coarse gold and diamond projects. If the sample is deemed to be free of errors (excluding inherent sample error), then it should remain in the resource database and subsequent treatment of this data may be warranted (LEUANGTHONG).

Grade capping is the practice for replacing any statistical outliers with a maximum value from the assumed sampled distribution. This is done statistically to better understand the true mean of the sample population. The estimation of highly skewed grade distribution can be sensitive to the presence of even a few extreme values.

Two primary reasons for capping high-grade samples are: (1) there is suspicion that uncapped grades may overstate the true average grade of a deposit; and (2) there is potential to overestimate block grades in the vicinity of these high-grade samples. Whyte (2012) presented a regulator's perspective on grade capping in mineral resource evaluation and suggested that the prevention of overestimation is good motivation to consider grade capping. For these reasons, capping has become a 'better-safe-thansorry' practice in the mining industry, and grade capping is done on almost all mineral resource models.

Another method is to limit the spatial influence of high-grade samples. Currently, a few commercial general mining packages offer the option to restrict the influence of high-grade samples. That influence is specified by the design of a search ellipsoid with dimensions smaller than that applied for grade estimation. This has the advantage of including valid high-grade assays, while limiting their sphere of influence.

The graph below displays a cumulative frequency diagram of the logAu sample values for the Granite drill holes. Often the probability graph will not be a straight line but will be composed of multiple straight lines or curves. A typical deviation from a straight line is a downward curve at the low end of the graph. This curve represents excess low-grade samples, or values below detection limit. Another common deviation from a straight line on the probability plot is a steeper slope at the upper end of the curve. This represents excess material in the high-grade population and may be caused by two superimposed populations, such as high-grade veins within lower grade disseminated or stockwork mineralization. Other causes of excess high-grade assays include small zones of material that is highly favorable to mineralization because of higher permeability, favorable chemical properties, secondary enrichment or metamorphic remobilization. Since the high-grade samples are usually capped to prevent overestimation of the grade of the resource, or restrictions on the search distances of higher-grade values can be applied during grade interpolations. If the high-grade samples show sufficient continuity to define a continuous volume, a separate high-grade domain may be defined and estimated separately from the lower mineralization (Darling, 2011).

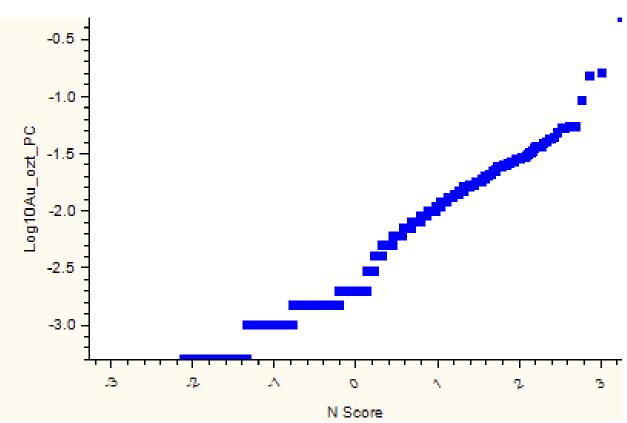


Figure 14-20 Granite LogAu Cumulative Frequency plot.

Reviewing the data and Figure 14.5-4 above, there is one outlier at 0.481 Au oz/ton that is significantly higher than the other values which seem to taper off at 0.1x. The value was taken from handwritten drill log information and no certificate is available for the sample. The surrounding lithology is mineralized but not to the extent of this sample and shows elevated Ag values as well. For the purpose of the resource, this value will be set 0.16 to not overestimate the resource grade at that location.

14.6.4 Lithology

Geologic information from the historic drill logs was entered by GeoGRAFX into the database to assist in the development of the geologic model. 32 of the 33 holes contained lithologic information.31 of the 33 holes had associated lithology logs. 1 additional hole with lithologic contacts was entered from section. A total of 225 lithology values were entered into the data set. There were 25 distinct lithologic units mapped in the logs. These are shown in Figure 14.5-5 below.

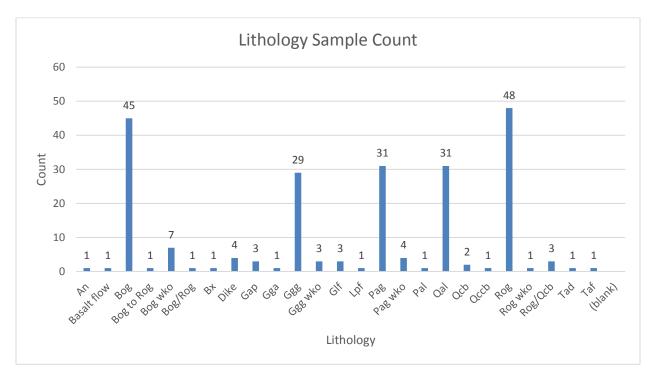


Figure 14-21 Histogram of Granite Lithologies Showing Sample Count.

14.6.5 Geological Interpretation and Modeling

Gerle Gold created 6 historical interpreted sections for the Granite deposit in 1987-88.

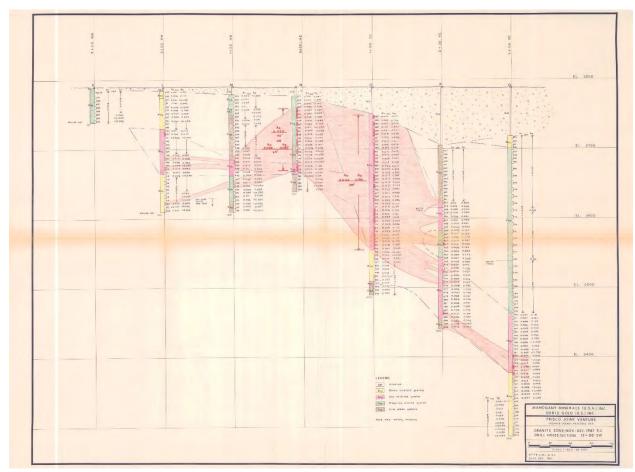


Figure 14-22 Granite Section 13+00 SW Gerle Gold

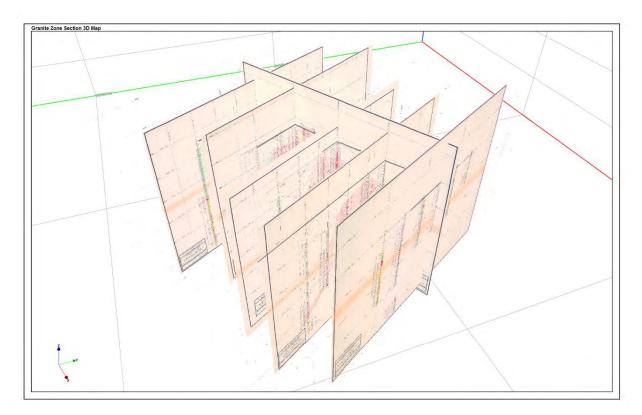


Figure 14-23 Granite Sections in 3D

It is recommended that the sections be recreated and reinterpreted with the corrected hole locations and those sections used as a base to create a geologic model for the deposit.

14.6.6 Spatial Analysis

Variography analysis using MicroMODEL software was completed to establish spatial variability of gold values in the deposit.

Variograms are used to measure the spatial continuity between data points. The objectives of the variography were to establish the directions of major grade continuity and to provide variogram model parameters for use in geostatistical grade interpolation.

Variography establishes the appropriate contribution that any specific composite should have when estimating a block volume value within a model. This is performed by comparing the orientation and distance used in the estimation to the variability of other samples of similar relative direction and distance.

The degree of spatial variability and continuity in a mineral deposit depends on both the distance and direction between points of comparison. Typically, the variability between samples is proportional to the distance between samples. If the variability is related to the direction of comparison, then the deposit is said to exhibit *anisotropic* tendencies, which can be summarized by an ellipse fitted to the ranges in the different directions. The semi-variogram is a common function used to measure spatial variability within a deposit.

The components of the variogram include the nugget, the sill and the range. Samples compared over very short distances (including samples from the same location) typically show some degree of variability. As a result, the curve of the variogram begins at a point on the y-axis above the origin a point called the *nugget*. The nugget is a measure of not only the natural variability of the data over very short distances, but also a measure of the variability that can be introduced due to errors during sample collection, preparation and assaying.

Typically, the amount of variability between samples increases as the distance between the samples increases. Eventually, the degree of variability between samples reaches a constant or maximum value - this is called the *sill and* the distance between samples at which this occurs is called the *range*. The sill and nugget values were taken from the omnidirectional and down-hole variograms, respectively.

Variograms were constructed to test grade continuity in a number of different orientations with orientations of 0 deg, 30 deg, 150 deg containing too few closely spaced data points to accurately produce reliable variograms. Drill hole spacing for the Gerle Gold drilling at Granite was 200 foot line spacing with drill holes at 100 foot centers. While this spacing served to delineate the Granite deposit, it is not optimal for resource estimation. Preliminary omnidirectional and down hole variograms on sample data of the Au values are shown below. They demonstrate a continuity of 78 ft. in the horizontal direction and 62 ft. downhole.

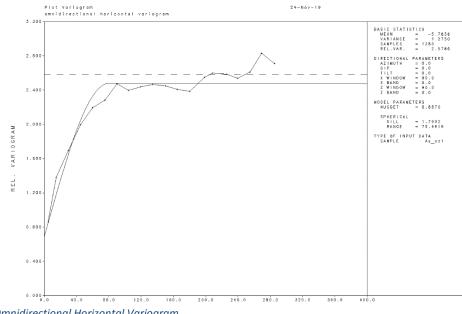


Figure 14-24 Omnidirectional Horizontal Variogram

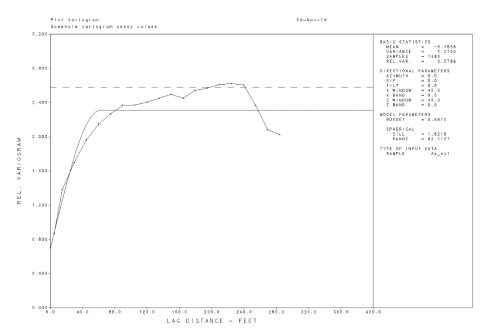


Figure 14-25 Vertical Variogram

It is recommended that in-fill drilling in the area of defined mineralization be conducted to further refine the resource.

14.6.7 Block Model Geometry

Ms. Carroll created a three-dimensional ("3D") block model for the Granite deposit using MapInfo/Discover 3D mining software. The block model was oriented north-south. The model was created with individual block dimensions of 15 x 15 x 15 ft (xyz).

The model origin is located at 12060east, 11220north, and at an elevation of 2250ft above sea level. The block model extends 1650 ft (110 blocks) in the easting direction, 1140 ft (76 blocks) in the northing direction, and vertically 720 ft (48 blocks). All block model coordinates for the Granite resource are stored in Local Mine Grid established by J.M. Kessler in 1987 using feet. The coordinate system was chosen to stay consistent with historic sections used in the resource. The coordinate limits of the model are shown in Table 14.5-3 and shown in Figure 14.6-10.

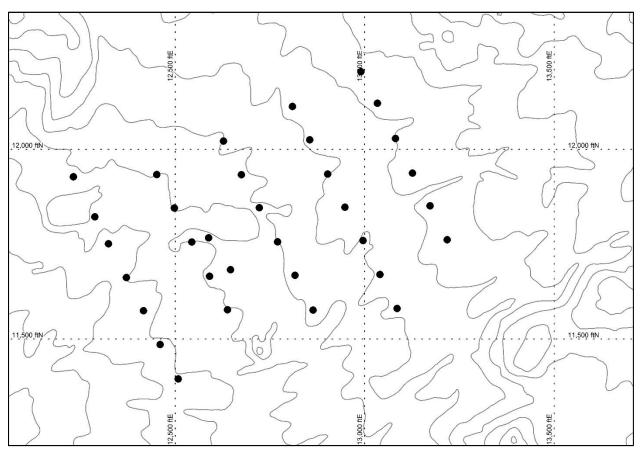


Figure 14-26 Drill Hole Locations for Granite Resource

The project coordinates for the Granite resource, including topography, are in the local mine grid established by Kessler in 1987 using feet.

Table 14.6-3 Granite 3D Block Model Limits
--

3D Block	Minimum	Maximum	Number of	Block Size	Dimensions
Model Limits			Blocks		Ft
Easting	12060	13710	110	15	1650
Northing	11220	12360	76	15	1140
Elevation	2250	2970	48	15	720

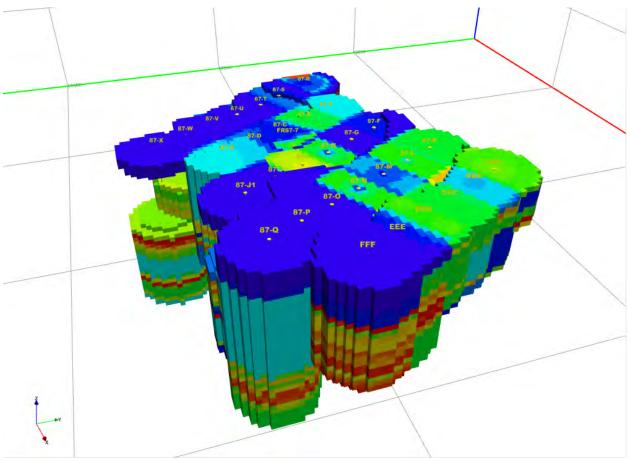
The extracted drill hole database shown in Table 14.5-4 contains 33 known collar locations and 1,399 assay records, broken down by drilling type as:

Table 14.6-4 Granite Drill Hole .	Summary sorted by Company
-----------------------------------	---------------------------

Company	Number of Holes	Length	Туре
Gerle Gold JV	2	279	Core
	31	7420	Reverse Circulation

All of the Gerle Gold Granite sample data was used in developing the geologic and resource models.

14.6.8 Grade Interpolation


Ms. Carroll assumed that the areas within the model were part of the resource, and therefore a primary aim of the interpolation was to fill the blocks within these models with grade. The parameters used to calculate the resource are described in Table 14.5-5 and shown in Figure 14.6-10.

The block model grades for gold were estimated using inverse distance squared. A search ellipse of 115 x 115 x 15 feet was used to constrain the inferred resource. The number of samples used to interpolate a block grade was set at a minimum of 1 and a maximum of 16. Values with 0 were assigned as missing Null values set to -1.0e32.

Drill Holes:	Total of 33 drill holes totaling 7,699 feet
	and 1,399 assay values were used to build the resource model
Composites:	No sample compositing. 97% of samples are 5 feet in length within the Granite
	deposit were used to assign values to the blocks in the resource
Average Grade:	Gold: 0.0063 oz/t (0.000 oz/t – 0.481 oz/t)
Capping:	0.481 was set to 0.16.
Tonnage Factor:	12.5 cu. ft./ton
Interpolation	Inverse Distance squared (ID2)
Method:	Minimum of 1 and maximum of 16 samples to use
Block Model:	Model Origin (X, Y, Z): (12060, 11220, 2250ft), no rotation
	Column Size 15 feet, 110 columns
	Row size 15 feet, 76 rows
	Level size 15 feet, 48 Levels
Search Ellipse:	Bearing:0, Inclination: 0, Tilt:0
	Inferred Resource - X – 115', Y – 115', Z – 15'

Table 14.6-5 Block Model parameters used to calculate the Granite Resource

Figure 14-27 Granite block model using 115x115x15 search parameters.

14.6.9 Granite Resource

Inverse Distance Squared method was used for the Discover3D voxel calculations for an in-situ resource. The parameters used are listed above. These numbers should be considered mathematical estimates only. Geology was not considered as part of the estimate; a more robust estimate would be obtained if the underlying geology and structure were considered.

Figure 14.13-1 shows the block model shown for the Granite resource. It shows Au values greater than the .0123 Au oz/ton cutoff. Each block is 15' x 15' x 15'.

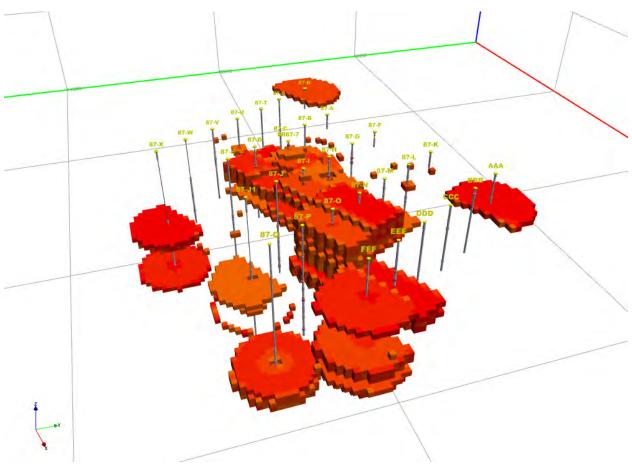


Figure 14-28 Granite Block Model showing values > .0123 Au oz/ton.

14.6.9.1 Sectional Inspection

Cross-sections comparing assay grade are shown in Figures 14.13-2 thru 14.13-3.

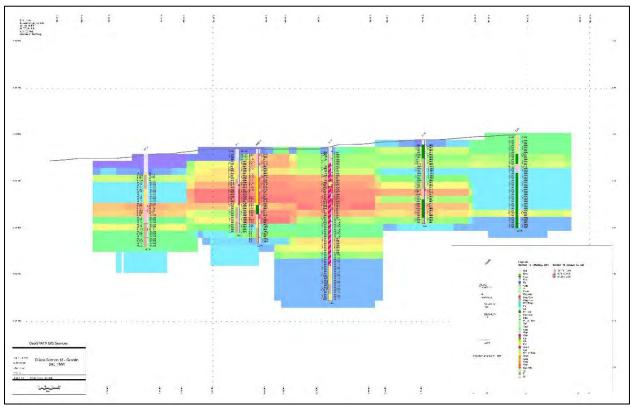


Figure 14-29 Visual Comparison of Assay vs Block Grade, Section 1NW

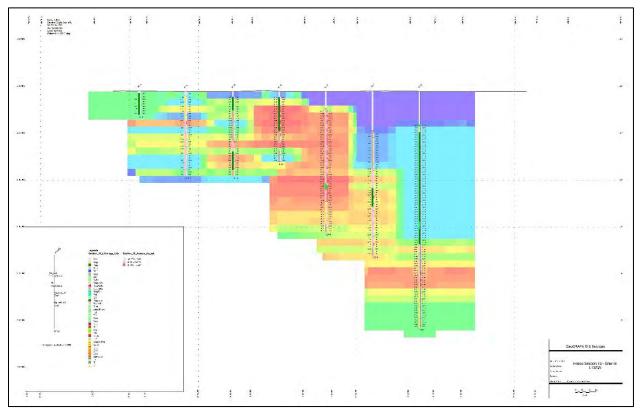


Figure 14-30 Visual Comparison of Assay vs Block Grade, L13SW

The block grades were visually compared to the assay grades on section. The visual inspection appeared to be reasonable. In Ms. Carroll's view, the Granite deposit block model is valid, reasonable and appropriate for Mineral Resource estimation.

14.6.10 Cut-Off Grade

Because of the requirement that the resource exists "in such form and quantity and of such a grade or quality that it has reasonable prospects for economic extraction", The author is reporting the resources at cutoffs that are reasonable for deposits of this nature and for the expected mining conditions and methods. The cutoffs were chosen to capture mineralization potentially available to open-pit extraction and heap-leach processing, which the authors believe is adequately supported by the metallurgical data provided in Section13.0.

For the purposes of reporting the 2019 Mineral Resource, the author has estimated a cut-off grade based on the approximate average price of gold, estimated operating costs and expected gold recovery as follows:

- Gold price assumed to be US\$1295/oz using the average price of gold (London PM Fix) over the past three years.
- Total mine, leach and recovery costs/ton of US\$12.75 provided by Joe Bardswich, PE (Bardswich L. J., 2019), based on mining cost, crushing & stacking costs and leaching costs using carbon adsorption (\$10.25 per ton to mine, crush and stack ore on the leach pad; Leaching costs, including carbon recovery are estimated to be \$2.50 per ton).
- Gold recovery of 80% based on 92% recovery during McClelland Laboratories 1987 bottle roll tests

Cut-off=operating cost/(price*recovery) = US\$12.75/(US\$1295*0.80) = 0.0123 oz/ton.

The author recommends that a cut-off grade of 0.0123 Au oz/ton be used to report Mineral Resources for Granite. This cutoff was chosen to capture mineralization potentially available to open-pit extraction and heap-leach processing.

The author notes that the data used is preliminary at this time and that the cut-off grade may be refined as economic parameters change and additional work is completed on both the Gold Dome and Granite deposits.

14.6.11Grade Tonnage

The Granite mineral resources are listed in Table 14.15-1, using various cutoff grades. These blockdiluted resources are presented in order to provide grade-distribution information, as well as to provide for economic conditions other than those envisioned by the 0.0143 oz Au/ton cutoff. Values are based on in-situ values.

Cutoff			Grade	
(oz Au/ton)	Volume ft3	Tons	Au Oz/ton	Oz Au
0.0050	60,139,125	4,811,130	0.012	57,734
0.0080	36,156,375	2,892,510	0.016	46,280
0.0100	27,769,500	2,221,560	0.018	39,988
0.0123	20,712,375	1,656,990	0.02	33,140
0.0150	14,647,500	1,171,800	0.023	26,951
0.0200	7,357,500	588,600	0.029	17,069
0.0300	1,441,125	115,290	0.053	6,110
0.0500	577,125	46,170	0.073	3,370
0.1000	0	0	0	0

Table 14.6-6 2018 Granite in-situ Tonnage/Grade values for varying cutoffs

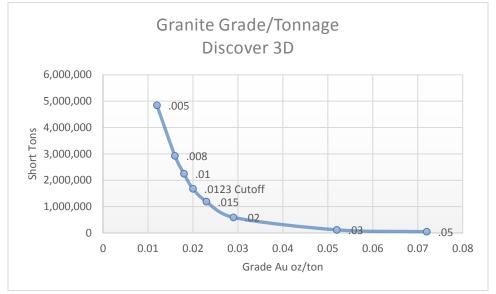


Figure 14-31 Granite Grade/Tonnage curve for in-situ resource.

14.6.12Classification of Mineral Resources

The authors classified resources in order of increasing geological and quantitative confidence into Inferred, Indicated, and Measured categories to be in compliance with the "CIM Definition Standards - For Mineral Resources and Mineral Reserves" (2010) and therefore Canadian National Instrument 43-101. CIM mineral resource definitions are given below:

Mineral Resource

Mineral Resources are sub-divided, in order of increasing geological confidence, into Inferred, Indicated and Measured categories. An Inferred Mineral Resource has a lower level of confidence than that applied to an Indicated Mineral Resource. An Indicated Mineral Resource has a higher level of confidence than an Inferred Mineral Resource but has a lower level of confidence than a Measured Mineral Resource.

A Mineral Resource is a concentration or occurrence of diamonds, natural solid inorganic material, or natural solid fossilized organic material including base and precious metals, coal, and industrial minerals

in or on the Earth's crust in such form and quantity and of such a grade or quality that it has reasonable prospects for economic extraction. The location, quantity, grade, geological characteristics and continuity of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge.

The term Mineral Resource covers mineralization and natural material of intrinsic economic interest which has been identified and estimated through exploration and sampling and within which Mineral Reserves may subsequently be defined by the consideration and application of technical, economic, legal, environmental, socio-economic and governmental factors. The phrase 'reasonable prospects for economic extraction' implies a judgement by the Qualified Person in respect of the technical and economic factors likely to influence the prospect of economic extraction. A Mineral Resource is an inventory of mineralization that under realistically assumed and justifiable technical and economic conditions might become economically extractable. These assumptions must be presented explicitly in both public and technical reports.

Inferred Mineral Resource

An 'Inferred Mineral Resource' is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes.

Due to the uncertainty that may be attached to Inferred Mineral Resources, it cannot be assumed that all or any part of an Inferred Mineral Resource will be upgraded to an Indicated or Measured Mineral Resource as a result of continued exploration. Confidence in the estimate is insufficient to allow the meaningful application of technical and economic parameters or to enable an evaluation of economic viability worthy of public disclosure. Inferred Mineral Resources must be excluded from estimates forming the basis of feasibility or other economic studies.

Indicated Mineral Resource

An 'Indicated Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed.

Mineralization may be classified as an Indicated Mineral Resource by the Qualified Person when the nature, quality, quantity and distribution of data are such as to allow confident interpretation of the geological framework and to reasonably assume the continuity of mineralization. The Qualified Person must recognize the importance of the Indicated Mineral Resource category to the advancement of the

feasibility of the project. An Indicated Mineral Resource estimate is of sufficient quality to support a Preliminary Feasibility Study which can serve as the basis for major development decisions.

Measured Mineral Resource

A 'Measured Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate application of technical and economic parameters, to support production planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough to confirm both geological and grade continuity.

Mineralization or other natural material of economic interest may be classified as a Measured Mineral Resource by the Qualified Person when the nature, quality, quantity and distribution of data are such that the tonnage and grade of the mineralization can be estimated to within close limits and that variation from the estimate would not significantly affect potential economic viability. This category requires a high level of confidence in, and understanding of, the geology and controls of the mineral deposit.

The Granite resources are classified on the basis of the number and distance of assays used in the interpolation of a block gold grade, as well as the number of holes that contributed values to the interpolation. These distances were based on semi-variogram analysis of the Au sample data. The following criteria were used for classifying the resource:

• In order for blocks to be considered as an Inferred Resource, represented by material estimated by one drillhole at a distance less than 115 feet from source data, and may not be considered as either measured or indicated resource.

Currently, there are Inferred resources within the Granite Deposit. Table14.16-1 lists the Granite Inferred mineral resource at a 0.0123 of cut-off grade.

Classification	Inferred			Indicated (Measured+Indicated blocks)			
Cutoff	Tons Grade Oz		Oz Au	Tons	Oz Au		
0.0123	1,656,990	0.02	33,140				

Table 14.6-7 2018 Granite in-situ classification of Tonnage/Grade values for 0.0123 cutoff

Notes:

1. The definitions of indicated and inferred mineral resources reported here are as defined in the CIM Standards on Mineral Resources and Mineral Reserves adopted by the CIM Council, as amended.

2. Inferred resource estimates have a great amount of uncertainty as to their existence and economic feasibility. There is no certainty that all or any part of an inferred mineral resource will ever be upgraded from an inferred resource to an indicated resource category. Estimates of inferred mineral resources may not form the basis of a feasibility or pre-feasibility study but may be used in connection with a preliminary economic assessment.

Tonnage and grades are in imperial units (feet, troy ounces and short tons). Contained gold ounces are reported as troy ounces.
 Block grades for gold were estimated from assay samples using inverse distance squared (IDS) interpolation into 15x15x15 ft blocks.

5. Maximum search distances used to calculate inferred resources were calculated using maximum distances of 115ft from the block being estimated.

6. The contained gold figures shown are in situ. No assurance can be given that the estimated quantities will be produced.

7. Mineral resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add due to rounding.

14.7 Resource Summary:

The in-situ mineral resource estimate for the Gold Dome and Granite deposits are presented in Table 14.7-1.

Deposit	Classification	Inferred			Indicated (Measured+Indicated blocks)		
	Cutoff	Tons	Grade	Oz Au	Tons	Grade	Oz Au
Gold Dome	0.0123	369,630	0.037	13,676	662,310	0.036	23,843
Granite	0.0123	1,656,990	0.02	33,140			

Mineral resources are not mineral reserves and may be materially affected by environmental, permitting, legal, socio - economic, marketing, political, or other factors. Ms. Carroll knows of no environmental, permitting, legal, socio - economic, marketing, political, or other factors that may materially affect the mineral resource estimate.

14.8 Comments on Resource Modeling

Gold Dome - Insufficient information was available to include lithology in modeling or resource estimation. Historical interpreted sections for Gold Dome were created by both Gerle Gold in 1987-1988 and Mohave Mining in 1989. Both companies incorporated the incorrectly located F series holes in the sections. It is recommended that the sections be recreated and reinterpreted with the corrected hole locations and those sections used as a base to create a geologic model for the deposit.

Review of the cross sections show the deposit is open in multiple directions on the western side of the Gold Dome Deposit. It is recommended that additional drilling to the west, north and south to expand and contain the resource.

Granite – The 100 by 200 foot hole spacing drilled by Gerle Gold was an ideal way to confirm mineralization encountered in the 1970s drilling. It is proposed that additional in-fill drilling be completed on the Granite deposit. The objective of the in-fill drilling program is to convert some of Inferred Mineral Resource to Indicated Mineral Resource, confirm continuity of mineralization and provide samples for additional metallurgical testing. Suggested holes are shown in red in Figure 14.8-1



Figure 14-32 Proposed in-fill drilling at the Granite deposit.

15. MINERAL RESERVE ESTIMATE

No mineral reserve estimate has been made on the Gold Dome or Granite deposit for this report.

16 MINING METHODS

Item 16: Mining Methods – Discuss the current or proposed mining methods and provide a summary of the relevant information used to establish the amenability or potential amenability of the mineral resources or mineral reserves to the proposed mining methods. Consider and, where relevant, include

- a) geotechnical, hydrological and other parameters relevant to mine or pit designs and plans;
- b) production rates, expected mine life, mining unit dimensions and mining dilution factors used;
- c) requirements for stripping, underground development and backfilling; and
- d) required mining fleet and machinery.

The Frisco Project is a low-grade disseminated gold deposit with mineralization at and near surface. It is amenable to conventional open pit mining methods. In general, mineralized rock and native rock extraction would consist of drill and blast operations and truck –shovel operations. Mining will be performed by a contract miner for the full mine life, who will utilize a mining fleet to meet the stated production rates, and the planned pit configuration and grades. It is anticipated that the company will perform all other (administrative, engineering, monitoring, and processing) operations.

The mining methods outlined in this section have been developed on a conceptual basis to support the current economic deposits at the Frisco project including the Gold Dome and Granite zones. Mining of the Gold Dome deposits at a rate of 2000 tons per day, 50 weeks per year is planned to produce a total of 660,000 tons at an average diluted grade of 0.031 oz/t Au and a corresponding 660,000 tons of waste (1:1 overall strip ratio). The present known resource will yield a 1.2 production life of 1.2 years. One hundred percent of the modeled resource is expected to be mined; this may change as mine economics; pit design and other factors are considered during the engineering and development phase of the project. The reader is cautioned that mineral resources contained herein are not mineral reserves, and as such, do not have demonstrated economic viability.

Currently, the depth of excavation will be entirely above the water table and, aside from precipitation will require no water management operations. Future operations (if exploration is successful in identifying additional resources) may intersect the groundwater table and may require water management protocols. These management protocols include but are not limited to pit water management including drainage channels to intercept inflowing groundwater, sumps to contain the water, and a pump/piping system to move the water to a surface containment. Among other possible uses, the pit water can be consumed in the mineralized rock recovery process, for dust control, and drilling.

During mining operations, blasthole samples would be collected and assayed to provide analytical data to define ore and waste boundaries and enable grade control personnel to determine which material is above the designated cutoff grade and meets recovery criteria. Initial mine plans would be improved based on the results of the daily blast-hole sampling/assaying program. to minimize dilution. The ore grade cutoff is currently 0.0123 oz Au/ton; however, this gold cutoff may be adjusted during the course of the Project in response to changes in economics.

Material with grade below cutoff will be mined as waste. Ore and waste boundaries will be closely examined and marked out by the ore-control geologist. Ore and waste will be physically flagged on the active mining benches after blasting. Waste rock will be stored in several waste rock facilities designed in close proximity to each pit to reduce haulage costs. Whenever possible, pit backfilling will be utilized during operations. Some waste mined late in the mine life will be placed in a designated storage facility to meet closure requirements.

Mine design, and the anticipated mining equipment required will be determined during the design phase of the project.

17 RECOVERY METHODS

Item 17: **Recovery Methods** – Discuss reasonably available information on test or operating results relating to the recoverability of the valuable component or commodity and amenability of the mineralization to the proposed processing methods. Consider and, where relevant, include

(a) a description or flow sheet of any current or proposed process plant;

(b) plant design, equipment characteristics and specifications, as applicable; and

(c) current or projected requirements for energy, water, and process materials.

17.1 Overview of Heap Leach Technology

Heap leaching technology was developed by the U.S. Bureau of Mines during the 1970's and 1980's to enable economic recovery of gold and silver from low grade, near surface deposits in the southwestern United States and is the most prevalent method used today in the United States. The concept is to be able to use "run of mine" or crushed ore, stacked on an impervious liner and use a weak cyanide solution to dissolve the gold without the need to grind the ore in an expensive milling operation.

Generally, the impervious liner is a double layer with lower layer being either an eighteen (18) inch layer of clay with permeability of 1 x 10-6 or a GCL (Geosynthetic Clay Liner) consisting of bentonite melded to HDPE (high density polyethylene). The upper layer is usually LLPDE (Linear Low-Density Polyethylene). A layer of permeable drain rock (usually 18 to 24 inches thick) is placed on top of the liner to enable quick drainage of the solution from the heap to a pregnant pond (pregnant with gold and silver). The ore is stacked on top of the drain layer and an agricultural type irrigation system installed to deliver the cyanide solution evenly over the surface of the heap. The solution percolates through the heap, dissolving metals as it comes in contact with them and drains to the preg pond. The solution is pumped from the preg pond to either a Merrill Crowe plant where gold and silver are adsorbed by activated charcoal. Discharge from the Merrill Crowe plant or the carbon columns flows to a barren pond where chemicals are added to ensure targeted PH, cyanide content, and anti-scalant levels. The barren solution is then pumped to the irrigation system on top of the heap and re-cycled through the heap ensuring a zero-discharge system.

Once the ore is stacked, it is a low cost operation to continually re-cycle the solution as the gold and silver are dissolved from the rock. Generally, recovery rates in conventional milling operations are higher (+95%) than from heap leach operations (60% to 85%) but capital and operating costs of heap leaching are much lower, making it the system of choice for low grade ores.

All resource scenarios and calculations in this report assume heap leach methods and assumed recoveries based on limited metallurgical test work. Certain cost estimates were provided by mining contractors and metallurgical engineers to establish general parameters to allow for support for a cut-off grade to be used in resource estimates. This assumes reasonably anticipated costs and recoveries for similar deposits in a similar setting. No engineering work has been completed to determine best case scenario, nor has any other alternative recovery method been considered.

Advanced metallurgical testing is planned to be conducted during the permitting and construction phases to ensure optimum recovery and operating parameters.

18 PROJECT INFRASTRUCTURE

Item 18: Project Infrastructure – Provide a summary of infrastructure and logistic requirements for the project, which could include roads, rail, port facilities, dams, dumps, stockpiles, leach pads, tailings disposal, power, and pipelines, as applicable.

18.1 Access and Regional Transportation

Excellent access to the Frisco property from four lane State Highway 68 is provided by the 1.5-mile-long old highway 68 Right of Way which bisects the property.

18.2 Site Transportation

Existing access and exploration roads on the property remain in good condition and can be easily expanded, have berms added where needed and to have water drainage channels constructed using a loader or grader

18.3 Other Project Infrastructure

The infrastructure for the Frisco Project is planned to be consistent with capital investments in projects of similar extent and scope in the area, with facilities being scoped to provide the basic functional necessities and with constraint as to cost. The Frisco plan anticipates constructing various needed facilities around the site to support operations, such as surface piping to deliver water to the leaching facilities from the existing well. Power will be supplied by diesel generators initially, with the possibility of extending power lines (approximately 3 miles) from the Katherine Mine subdivision. Mobile crushing equipment owned by local contractors would be used. A carbon column recovery plant would be constructed on site. No mining camp is required as housing is available at existing subdivisions (within 3 miles) and apartment complexes are located within 8 miles of the site. Fencing would be constructed for security and to keep wildlife out. Portable structures for the lab and a small office would be erected. Air conditioning would be installed. Heating would not be required.

19 MARKET STUDIES AND CONTRACTS

Item 19: Market Studies and Contracts

(a) Provide a summary of reasonably available information concerning markets for the issuer's production, including the nature and material terms of any agency relationships. Discuss the nature of any studies or analyses completed by the issuer, including any relevant market studies, commodity price projections, product valuations, market entry strategies, or product specification requirements. Confirm that the qualified person has reviewed these studies and analyses and that the results support the assumptions in the technical report.

(b) Identify any contracts material to the issuer that are required for property development, including mining, concentrating, smelting, refining, transportation, handling, sales and hedging, and forward sales contracts or arrangements. State which contracts are in place and which are still under negotiation. For contracts that are in place, discuss whether the terms, rates or charges are within industry norms.

Gold, in almost any form is readily saleable, but the price is always based on the daily quoted value generally from London or New York. A higher purity results in a higher percentage of the world price that will be paid and the lower the treatment charges that will be deducted.

Frisco intends to produce dore that is +99% gold and silver. Sale of dore of this quality can be arranged with any one of several precious metal refiners.

Gold bullion sells in several international markets, the most well-known being the London Metals Exchange or LME. The gold price over the last 5 years has peaked at \$1552/oz in mid-2019 and hit a low of \$1050/oz late 2015. Current gold prices are trading in a narrow range in the area of \$1450/oz. at the time of issuance of this report.

Figure 19-1 Five year gold price (source: Kitco.com)

No market studies have been completed nor have any contracts relating to this been completed. The decision to the type of output sold will be made during the development phase of the project.

20 ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT

Item 20 : Environmental Studies, Permitting, and Social or Community Impact – Discuss reasonably available information on environmental, permitting, and social or community factors related to the project. Consider and, where relevant, include

(a) a summary of the results of any environmental studies and a discussion of any known environmental issues that could materially impact the issuer's ability to extract the mineral resources or mineral reserves;

(b) requirements and plans for waste and tailings disposal, site monitoring, and water management both during operations and post mine closure;

(c) project permitting requirements, the status of any permit applications, and any known requirements to post performance or reclamation bonds;

(d) a discussion of any potential social or community related requirements and plans for the project and the status of any negotiations or agreements with local communities; and

(e) a discussion of mine closure (remediation and reclamation) requirements and costs.

20.1 Environmental Studies

No environmental studies have been completed to date. Both the patented Frisco property and the State section have seen mining and exploration activity for approximately 120 years. All areas on the Frisco property that are planned to be impacted have undergone surface disturbance in the last five years. Standard Biological Evaluation and A Cultural resource Inventory will be conducted on the State section as required.

20.2 Remediation

Design efforts will include a mining plan that will utilize the placement of barren rock from the mining operations and conserve all available soils for re-vegetation cover to improve the aesthetics of the existing site at a minimal cost. De-toxification and re-contouring of the leach pad upon completion of operations will provide material readily amenable to re-vegetation.

20.3 Permitting Activities at the Frisco Property

The Frisco Mine Project is located within a recognized historic mining area about 25 miles west of Kingman, and 9 miles east of Bullhead City, in the Black Mountains of Mohave County, Arizona. The location of mining activities is planned to remain on patented land during the course of the project (Gold Dome deposit) or on State Land (Granite Deposit). No incursion onto Federal Land is envisaged so Federal permitting under the National Environmental Policy Act will not be required. A summary of State and other permitting requirements are described below. A variety of state permits, and approvals may be necessary to develop the project. The timeframes described are based on recent projects in Arizona but are subject to change depending on the complexity of the project, public opinion, agency capabilities and priorities and other factors outside of AZ's control. The principals of Frisco Gold Corporation are registered professional engineers (P.E.) in the State of Arizona and have extensive experience in acquiring permits in Arizona. Details of the expected permitting requirements are listed below. State Permitting will include an Aquifer Protection Permit, Air Quality Permit, Mined Land Reclamation Permit and Stormwater Discharge Authorization. To date, none of the primary permits for operation have been acquired.

12.7.1 Air Quality Permit

The Air Quality Permits Program ensures that the air pollutants emitted from various sources do not exceed National Ambient Air Quality Standards or cause significant deterioration in areas which presently have clean air. The program also ensures the preservation of air quality in wilderness areas and controls risks caused by the emission of hazardous air pollutants.

Any source that releases, into the air, a regulated air pollutant above specified levels will be required to first obtain an air quality permit or permit revision to construct, operate or make a modification.

The Arizona Department of Environmental Quality (DEQ) issues the required Air Quality Permits.

The time required to obtain an Air Quality Control permit is dependent on the size and complexity of the facility, but usually requires a minimum of four months to process. Permits are valid for five years.

12.7.2 Aquifer Protection Permit

An aquifer protection permit is needed if you own or operate a facility that discharges either directly to an aquifer or to the land surface or the vadose zone in such a manner that there is a reasonable probability that the pollutant will reach an aquifer. The Frisco heap leach operations will be a "zero discharge" facility, however the potential to discharge requires that a permit be in place.

The applicant for an individual APP must demonstrate that the Best Available Demonstrated Control Technology (BADCT) will be utilized to prevent or eliminate the discharge of pollutants, that aquifer water quality standards will not be violated in groundwater at the point of compliance, that the applicant has financial and technical capability to comply with the permit, and that the property has been properly zoned for the activity.

The initial fee for an individual APP application is \$1,000 for individual permits, amendments to individual permits, clean closures and other approvals (services subject to an hourly rate fee).

Individual permits are issued for the operational life of the facility. Individual permits review may take from six months to more than a year to complete, depending on the complexity of the project, the extent of public involvement, and the responsiveness of the applicant. Permits can be processed more quickly if an application is submitted that is complete and technically sufficient to meet program requirements. It is expected that the permitting process will not exceed seven months.

12.7.3 Stormwater Discharge Authorization

Industrial Activities within the categories at 40 C.F.R. 122.26(b)(14), which includes mining, with stormwater discharges are required to obtain an AZPDES stormwater permit.

A Notice of Intent is required, complete with a Stormwater Pollution Prevention Plan (SWPPP) and these documents are required to be posted on site.

There is no ADEQ fee at this time.

For coverage under ADEQ's general stormwater permit, discharges are authorized 48 hours after notice of intent is postmarked, unless otherwise notified by ADEQ.

12.7.4 Mined Land Reclamation Plan

Reclamation plans, associated costs, and financial assurance mechanisms must be submitted and approved for all metalliferous mining units and exploration operations with surface disturbances on private lands greater than five acres. The extent of operations on undisturbed ground will measure much less than five acres so this permit is not required on the Frisco Gold Dome project.

20.4 Social or Community Impact

No Social or Community Impact studies have been completed to date and none are intended. Mohave County is a pro-business, pro-mining county and the value of good paying mining jobs is appreciated by the citizenry.

20.4.1 Mine Safety & Health Administration

For mine safety and health, operators do not need a permit to begin operations, however, the Mine Safety and Health Administration (MSHA) requires that before starting operations, persons must notify MSHA. Frisco has already received a Mine ID number as required by the regulations. The professionals who are principals of Frisco Gold Corporation have achieved enviable safety records and have extensive experience in mine safety and mine operations. They have undertaken the mandatory mine safety training and annually renew their certifications.

21 CAPITAL AND OPERATING COSTS

Item 21: Capital and Operating Costs – Provide a summary of capital and operating cost estimates, with the major components set out in tabular form. Explain and justify the basis for the cost estimates.

21.1 Capital Costs

A capital cost estimate was developed for the Frisco Gold Dome project using an eight-month development scheduled commencing when financing is arranged. Final engineering design would be completed in the first two months in concert with submission of permit applications to the State of Arizona. Grading for the leach pad, excavation for ponds, construction of the leach pad low permeability layer and placement of the geomembrane liner will be conducted simultaneously with the permitting approval process.

The design of the Gold Dome leach facilities will be finalized in accordance with the Arizona Department of Environmental Quality (ADEQ) prescriptive design guidance (Best Available Demonstrated Control Technology – BADCT) for heap leach facilities, process solution ponds, and non-stormwater (contingency stormwater storage) ponds.

The leach pad site is relatively flat due to the previous uses of the Gold Dome property as a staging area and as a source of aggregate for the re-construction of State Highway 68 and other area construction projects. Fine aggregates remain on site in stockpiles from previous production of rip rap and other coarse aggregate products. Fine-grained, low-permeability material is available locally and can be imported to serve as the soil liner bedding. The imported low permeability material will be placed to a thickness of eighteen (18) inches on a prepared foundation of graded and compacted fine aggregates. The liner bedding will be covered with a 2.0 millimeter (mm) linear low density polyethylene (LLDPE) geomembrane liner.

The pregnant and barren solution ponds will be constructed with upper and lower 1.5-mm high density polyethylene (HDPE) geomembranes placed on the low permeability imported material. An HDPE drain net will be placed between the geomembranes to serve as a pregnant pond LCRS (leak collection and recovery system).

The mineral resource estimate in this report was based on drilling and analysis completed through the 1989 drilling program.

Environmental and operating permits are expected to be acquired before the conclusion of the construction phase. The crushing and stacking contractor will be selected and mobilized to site before final permits are received.

The capital cost estimate for Frisco development was prepared utilizing the experience of Frisco principals gained from working on similar projects and the known costs of recently completed, similarly sized plants in the general area of Frisco. Costs were compared with data from a Mine cost service as a check.

The estimates of Capital Expenditures and Operating Costs were developed based on the following parameters.

	Year 1	Year 2	Total
Grade as per resource model	0.036	0.036	
Dilution	0.034	0.034	
Assumed price of gold	1,500.00	1,600.00	
Assumed recovery rate	0.80	0.80	
Tons processed	300,000.00	362,100.00	662,100.00
Ounces produced	8,208.00	9,907	18,115
REVENUE FROM GOLD SALES	12,312,000.00	15,851,289.60	28,163,289.60
REVENUE LESS OPER.COSTS	5,065,000.00	8,657,450.60	13,722,450.60

The following table shows the estimated Capital Expenditures for Frisco.

MINE CAPITAL EXPENDITURES	Year 1	Year 2	Total
Permitting & Engineering	450,000		
bonding	500,000		
Liner	700,000	200,000	
build pads & ponds	50,000		
drain rock on liner	45,000	20,000	
piping	35,000		
pumps	45,000		
water wells & flow line	125,000		
cyanide tanks	10,000		
hydroxide tanks	5,000		
Carbon Strip System	125,000		
electro win (send carbon to Vegas)	40,000		
carbon columns	120,000		
Remediation	300,000		
Water Wells & Flowline	125,000		
Cement silo and pug mill	100,000		
assay labs on site	150,000		
legal and accounting	150,000	100,000	
Drilling & metallurgical tests	50,000		
purchase of support equipment	75,000	20,000	
exploration on Frisco property	550,000		
Working Capital-Startup	1,000,000		
Contingency	250,000	200,000	
Total Mine Capital	5,000,000	540,000	5,540,000

21.2 Operating Costs

Mine operating cost estimates are based on cost estimates from local contractors for both mining and crushing and a calculated leaching and metals recovery cost based on estimated labor and materials required.

OPERATING COSTS	Year 1	Year 2	Total
Engineering, supv. & geology	480,000	300,000	
Site supv, safety, security	300,000	280,000	
Assayers	100,000	100,000	
Leach crew	480,000	480,000	
Field supplies	130,000	110,000	
Maintenance & equip rental	180,000	200,000	
Fuel & Electricity	64,000	60,000	
Carbon strip & refining	155,000	130,200	
Dore transp. & ins.	80,000	67,200	
Env. Monitoring	50,000	42,000	
Drill, blast load haul ore	1,305,000	1,575,135	
Drill, blast load haul waste rock	522,000	630,054	
Crush & stack ore	1,950,000	2,353,650	
Chemicals	405,000	340,200	
Leach supplies	45,000	37,800	
Insurance	50,000	50,000	
Legal & accounting	150,000	150,000	
Royalties	735,000	230,000	
Az severance tax	66,000	57,600	
Total operating costs	7,247,000	7,193,839	14,440,839

Operating Cost per ounce produced = \$14,440,839/18,115 = \$797.18

22 ECONOMIC ANALYSIS

Item 22: Economic Analysis – Provide an economic analysis for the project that includes a clear statement of and justification for the principal assumptions;

- a) cash flow forecasts on an annual basis using mineral reserves or mineral resources and an annual production schedule for the life of the project;
- *b)* a discussion of net present value (NPV), internal rate of return (IRR), and payback period of capital with imputed or actual interest;
- c) a summary of the taxes, royalties and other government levies or interests applicable to the mineral project or to production, and to revenue or income from the mineral project; and

sensitivity or other analysis using variants in commodity price, grade, capital and operating costs, or other significant parameters, as appropriate, and discuss the impact of the results.

The Frisco Gold Dome represents a small, low capex, open pit mining/heap leachable deposit. Cost projections were based on cost estimates from local contractors for both mining and crushing and a calculated leaching and meals recovery cost based on estimated labor and materials required.

The following provide the basis of the estimated costs.

Major Operating costs used.

mine & haul ore	\$3.15
crush & stack	\$6.50
drill & blast	\$0.60
leach	\$2.20
Strip carbon pour dore	\$0.30
total cost per ton	\$12.75

The following parameters were the basis of the analysis

- Production Rate: 2000 tons per day, 5 days per week;
- Mine Life: 2.0 years;
- Average Gold Recovery: 80%
- Life of Mine Strip Ratio: 0.4:1.0 (waste:ore);
- Initial Capital Cost: US \$5.0 Million
- Life of Mine Capital Cost: US\$5.54 million;
- Cash Costs per Gold Ounce Recovered: US\$994;
- Average Annual Gold Production: 9,600 oz;
- Average Gold Grade: 0.039 ounces per ton (oz/t;
- The permitting process will be completed 8 months after financing is arranged
- Construction of major process components (leach pad, ponds, carbon columns) will be constructed simultaneously with permitting.
- Detailed engineering will be done during the permitting process

- Long lead time items will be ordered before the final permits are received; and
- The crushing and stacking contractor will be selected before final permits are received.

This Technical Report is neither a Feasibility Study (FS) nor a Preliminary Economic Analysis (PEA). The economic analysis described in this report provides only a preliminary overview of the project economics based on broad, factored assumptions. No reserves can be declared for the project as insufficient detailed engineering and costing work was done. As per CIM guidelines, reserves can only be declared with a preliminary feasibility-level study.

The mineral resources used in the mine plan and economic analysis include Inferred mineral resources. Inferred mineral resources are considered too speculative geologically to have the economic considerations applied to them to be categorized as mineral reserves, and there is no certainty that the inferred resources will be upgraded to a higher resource category. Based on this, there is no certainty that the results of this preliminary assessment will be realized.

Arizona requires a Severance Tax of 2% on (production sales less Arizona production costs) and an allowance of \$149,493 equal to 0.5% has been included in the analysis. Income taxes have not been calculated and are not included in the analysis.

Property Royalties payments of \$1,128,758 are included in the analysis.

22.1 Results

The results of the economic analysis indicate that the project is economic above a \$1000 gold price.

Cut-off grades were calculated for various gold prices.

	Mined grade	Recovered grade	Gold Price \$1295	Gold Price \$1465
Recovered grades for various cut				
offs	0.01	0.008	10.36	11.72
	0.012	0.010	12.43	14.06
	0.015	0.012	15.54	17.58

It must be noted that the economic analysis in this report provides only a preliminary overview of the project economics based on broad, factored assumptions. No reserves can be declared for the project as insufficient detailed engineering and costing work was done.

22.2 Tax Rates

Taxable income for income tax purposes is defined as metal revenues minus operating expenses, royalty, property and severance taxes, reclamation and closure expense, depreciation and depletion. Income tax rates for state and federal are as follows:

- State rate 6.5%
- Federal rate 34.2%

Sales taxes on purchases are approximately 9.5%. Materials and services used in mining that comes in direct contact with the ore, or that are used for pollution prevention purposes are exempt from taxes.

23 ADJACENT PROPERTIES

A technical report may include relevant information concerning an adjacent property if

- a) such information was publicly disclosed by the owner or operator of the adjacent property;
- b) the source of the information is identified;
- c) the technical report states that its qualified person has been unable to verify the information and that the information is not necessarily indicative of the mineralization on the property that is the subject of the technical report;
- d) the technical report clearly distinguishes between the information from the adjacent property and the information from the property that is the subject of the technical report; and
- e) any historical estimates of mineral resources or mineral reserves are disclosed in accordance with paragraph 2.4 (a) of the Instrument.

Known deposits or prospects in the immediate vicinity of the Frisco Mine, that are not part of the Frisco Project, include the Oatman District, Secret Pass, Arabian, Tyro, Katherine, Moss and Gold Road mines. Figure 4.1-1 shows their locations with respect to the Frisco project. The description on the mining districts and associated deposits are taken largely from information in the Arizona Geological Survey files, (Wilson, 1967), (Gardner, 1936) and (Schrader, 1917) publications with additional information as cited.

Ms. Carroll has not verified the information presented here on the adjacent or nearby deposits or prospects. The mineralization in these adjacent properties is in no way conclusively indicative of the mineralization at the Frisco Deposits that is the subject of the technical report.

23.1 Oatman District

The Oatman District is a volcanic-hosted epithermal bonanza-vein district located about 12 miles south of the Frisco Deposit. Mineralization occurs in quartz-calcite-adularia veins with fluorite, gypsum, FeOx, MnOx. Between 1897 and 1942, Oatman produced a total of 2.2 million ounces of gold and 800,000 ounces of silver from 3.8 million tons of ore that averaged 0.58Au oz/ton and 0.17oz Ag/ton; there were eight major "ore bodies" and a number of lesser deposits (Clifton, 1980) (Durning, 1984).

23.2 Secret Pass

The Secret Pass Deposit is located about 4.7 miles south of the Frisco Project. The gold mineralization at the Secret Pass project is found associated with the Frisco Mine fault, a regional-scale fault system that, in the project area, has a nearly vertical dip. Past exploration, primarily on the Tin Cup and FM zones, includes 46,051ft of drilling in 126 holes, the majority of which was reverse circulation drilling. Geologic investigations show that the Secret Pass project shares some similarities with the uppermost levels of mineralization at the Oatman District, Arizona, 8 miles to the south. (Carroll, Technical Report on the Secret Pass Property, Mohave County Arizona, 2016).).

23.3 Arabian Mine

The Arabian Deposit is located 1.75 miles to the southwest of the Frisco Mine. Geologically, gold on the Arabian property occurs in a NE trending Tertiary rhyolite porphyry brecciated dike intruded along the fault contact between Precambrian granites to the northwest and Tertiary volcanics in the hanging wall to the southeast. The breccia consists of silicified fragments set in a matrix of quartz and minor adularia. It is almost free of pyrite and no other sulfides occur. Gold seems to occur as very small grains

disseminated through the quartz. (Graham, Arabian mine property, Mohave County, Arizona: Loss of mineral value due to expansion of a State Highway right of way, 1991).

The Arabian produced a total of 15,000 tons of ore, grading up to 0.5 oz/ton gold and 3-10 oz/ton silver from 1917 thru 1933. (Harris, 1998)

23.4 Tyro Mine

The Tyro Mine is located approximately 2.3 miles northwest of the Frisco property. The gold mineralization occurs in Tertiary rhyolite dikes related to northwest trending normal faulting in Precambrian granite and gneiss. Mineralization is associated with quartz-calcite veins containing fluorite, gold. Records show the mine was in production between 1902 and 1982 with an average grade of 0.3 to 11 oz/ton Au, up to 56 oz/ton Ag (Schrader, Mineral Deposits of the Cerbat Range, Black Mountains, and Grand Wash Cliffs, Mohave County, Ariz., 1909). A new 300 tpd carbon in leach mill was constructed in the early 1980's and operated until at least 1989 (ADMMR, 2013-07-31).

23.5 Katherine Mine

The Katherine Mine is located about 7.7 miles northwest of the Frisco property. The geology consists of Tertiary trachyte and rhyolite flows and dikes in contact with Precambrian gneiss/granite. Gold occurs in NE striking quartz veins mostly replacing calcite, with associated adularia and fluorite. Ore minerals include silver, hematite, chalcocite (Schrader, Mineral Deposits of the Cerbat Range, Black Mountains, and Grand Wash Cliffs, Mohave County, Ariz., 1909). The occurrence of the Katherine ore body in the pre-Cambrian rocks north of the Oatman district and the fact that this ore, in structure and mineralogy, rather closely resembles that of the United Eastern mine of course suggest the occurrence of similar ore in the pre-Cambrian rocks under the volcanic flows of the Oatman district.

Between 1900 and 1933, Katherine produced \$1,700,000 gold, \$100,000 silver (Harris, 1998).

23.6 Moss Mine

The Moss Mine is located about 7.9 miles southwest of the Frisco property. The vein strikes N. 78° W., dips 70° S., and occurs in the Moss quartz monzonite-porphyry. It forms a lode from 20 to more than 100 feet wide, with the widest portion at the western end, and is traceable on the surface for more than a mile east of the mine. The vein filling consists of fine-grained white quartz and calcite, with stringers of colorless to pale-green fluorite. The largest ore shoot consisted of free gold in iron-stained quartz but extended to a depth of only 65 feet. Several smaller ore bodies were mined from near the surface at various places along the vein. (Wilson, 1967)

Production details for the historical Moss mine are limited. A total of some 12,000 oz of gold is estimated to have been produced prior to 1920, and that in (probably) 1988, a total of between 3,000 and 5,000 short tons were extracted and hauled to Tyro Mill in Mohave County (unverified information supplied by the Company, the grade of the mineralized material is unknown) (Stone, Thomas, Kilby, & Brownlee, 2014).

In 2018 Moss mine resumed commercial production with an estimated measured + indicated resource of 15,480,000 tonnes grading 0.76 g/t Au and 9.3 g/t Ag. (Northern Vertex Moss Gold-Siver Mine, NW Arizona, USA, 2019)

23.7 Gold Road

The Gold Road Vein is a classic low-sulfidation epithermal, banded quartz, calcite, adularia vein about 11 miles south of Frisco (Lausen, 1931, Clifton et al., 1980; DeWitt et al., 1991). Historic gold production has come from a vein system averaging approximately 40 feet in width. Typically, the ore grade section of the vein is on or near the footwall of the vein system. The mineralization at the Gold Road Mine consists of quartz-calcite-adularia veins within the northwest-trending Gold Road fault zone. The fault zone can be over 150 feet (46 m) wide and quartz vein(s) may occupy one or more strands within the structure. Vein strands usually occupy the footwall, hanging wall or a central portion of the structure, but strands may occur in two or all three of these positions within the same area.

The vein consists mostly of quartz with local concentrations of calcite and adularia. At least five major stages of quartz deposition are present in the vein.

Between 1900 and 2015, Gold Road produced a total of 746,040 ounces of gold from 2,366,616 tons of ore that averaged 0.32 Au oz/ton (9.92 g/t) (Guilinger, 2018). In 2019 Para Resources re-opened the Gold Road Mine with their first pour of dore occurring in November.

24 OTHER RELEVANT DATA

Other Relevant Data and Information – Include any additional information or explanation necessary to make the technical report understandable and not misleading.

This report summarizes all available data and information material to the Frisco Project as of December 1, 2019. The author knows of no other relevant technical or other data or information necessary to make the report more understandable and not misleading.

25 INTERPRETATION & CONCLUSIONS

Summarize the relevant results and interpretations of the information and analysis being reported on. Discuss any significant risks and uncertainties that could reasonably be expected to affect the reliability or confidence in the exploration information, mineral resource or mineral reserve estimates, or projected economic outcomes. Discuss any reasonably foreseeable impacts of these risks and uncertainties to the project's potential economic viability or continued viability. A technical report concerning exploration information must include the conclusions of the qualified person.

The author has reviewed the historical Frisco project data, verified the drill-hole database, attained an understanding of the extent of historical QA/QC procedures implemented, and visited the project site. Based on this work, it is the opinion of the authors that the project data are generally an accurate and reasonable representation of the Frisco project and adequately support the mineral resource estimation for Gold Dome and Granite.

25.1 Geology

The Frisco mine is on the west flank of the Black Mountains, near the north end of the Union Pass Mining District. The rocks comprise a closely related series of volcanic flows, with associated tuffs, which rest on Precambrian crystalline rocks, chiefly granite and gneiss. The contact between these units appears to be a low-angle (less than 45 degree dip) normal fault, the Black Mountains Detachment Fault.

There are two ore bodies on the Frisco patented claims, both hosted in volcanic rocks: The Gold Crown and the Gold Dome. In addition, the adjacent State Section 16 hosts both the Granite and Granite Extension areas to the southwest where gold mineralization occurs in Precambrian rocks.

The gold mineralization at the Frisco property is primarily related to a gold-silver stock-work, brecciated, low sulphidation, epithermal vein system associated with regional scale faulting. Mineralization of this type is found at the Oatman District (2.5 million ounces), south of the project area. Mineralization is also related to low-angle detachment faulting with gold deposition occurring as a result of fluid mixing at an oxidation-reduction boundary. Mineralization of this system has been traced to the north from the Oatman District, through the Secret Pass – Frisco Mine area, into the Van Deemen area some 40 mi to the north.

The Gold Dome gold deposit occurs as a blanket-like deposit, generally conformable to the volcanic stratigraphy but severely disrupted by post-mineral faulting. The mineralized zone, which varies from a few feet to 60 feet in thickness, dips northerly at about 25 degrees on the southern exposure, flattens, and then reverses to a gentle southerly dip. The long axis of the zone of interest strikes east to northeasterly. Gold mineralization is hosted in quartz-cemented breccias of rhyolite porphyry and andesite. The gold is finely disseminated and probably occurs as micron-sized particles. Silver values are generally equivalent to gold values. Base metals are absent.

The Granite deposit occurs as a blanket like deposit, which varies from a few feet to several hundred feet in thickness, strikes generally east/west. Gold mineralization is hosted in quartz-cemented breccias of propylitically altered preCambrian granite which is overprinted by mineralization. The gold is finely disseminated and probably occurs as micron sized particles.

25.2 Drilling and Surveying

Between 1972 and 1989 over 250 holes were drilled on the Frisco property to explore and define mineralization. Drilling was conducted by Red Dog Mining (Chester Millar) of Vancouver, B.C. in the early 1970s and 1982 followed by Frisco Land and Mining Company (Bonelli) from 1983-1985. Gerle Gold in a Joint venture with Mahogany Minerals conducted two phases of drilling in 1987 and 1988, followed by Ivernia West thru its subsidiary Mohave Mining Inc. in 1989. An inventory of known drilling on the project totals 36,135 feet in 289 holes including 10 core, 131 reverse circulation and 48 Air track holes. No drilling on the Frisco project area has been undertaken by Frisco Gold Company.

J.M. Kessler, Registered Arizona Land Surveyor and a U.S. Mineral Surveyor, established a survey grid on the property in May of 1987. The southwest corner of Section 16, T.21 N, R.20 W, Gila and Salt River Meridian, was arbitrarily chosen as grid coordinate 10,000 North- 10,000 East. In February 2015 Eric Stephan, a registered land surveyor with Cornerstone Land Surveying was contracted by Frisco Gold Corporation, to survey the Frisco Mine patented claims in sections 9,15 & 16, T21N, R20W GSRM, Mohave County Arizona.

Based on historic information and personal communication, the core, air track and RC drilling and surveying methods employed at the Frisco project are determined to be acceptable and consistent with current industry standards.

25.3 Sampling Method and Approach

There were no descriptions found of sample preparation methods, sample security measures or chain of custody procedures utilized by any of the companies that collected surface samples at the Frisco project. In the mid-1980's, it was not as common for documentation of these topics to be as thorough as it is expected to be now, and historic estimates were not subject to a regulatory regime that would have required such documentation.

25.4 Sample Preparation, Analyses, and Security

Between 1972 and 1989 over 250 holes were drilled on the Frisco property to explore and define mineralization. The major contributors to the current Frisco project database include Red Dog Mining, Frisco Land & Mining, Gerle Gold/Mahogany Minerals JV and Mohave Mining/Ivernia. There were no descriptions found of sample preparation methods, sample security measures or chain of custody procedures utilized by any of the companies that collected surface samples at the Frisco project. Mohave Mining/Ivernia instituted quality assurance/quality control ("QA/QC") programs, however the program does not meet current industry standards.

25.5 Database

The modeling and resource estimation utilized digital topography of the project area and the drill hole database compiled by GeoGRAFX GIS Services. The extracted drill hole database for the Frisco patented claims contains 173 unique collar records and 2.143 assay records; State Section 16 contains 141 unique collar records and 3,038 assay records. There are two resource areas considered in this report within the Frisco project; the Gold Dome Deposit on the Frisco patented claims, and the Granite Deposit on State

Section 16. These 2 resources were treated separately. Drill holes from each resource area were imported into MapInfo/Discover databases. The extracted database for Gold Dome contains 115 drill holes totaling 12,658 feet. The extracted database for Granite contains 33 drill holes from the 1987-1989 drilling totaling 7699 feet.

Topographic data for the resource area was derived from detailed aerial mapping survey completed for Gerle Gold in 1987. using a local grid.

Drill hole collar locations were either digitized from existing maps, or transcribed from the drill logs and plotted sections, or company reports.

Assay data was entered from the assay certificates when available, or from drill logs, sections. Copies of certificates were available for all assays except the samples sent to GD Resources Inc. for analysis.

Geologic information from the historic drill logs and sections were entered into the database to assist in the development of the geologic model. A total of 309 lithologic values from 53 holes were entered into the Gold Dome database. A total of 351 lithologic values from 57 holes were entered into the Section 16 database.

Industry standard validation checks of the database were carried out with minor corrections made where necessary. The database was interrogated for inconsistencies in naming conventions or analytical units, duplicate entries, interval, length or distance values less than or equal to zero, blank or zero-value assay results, out-of-sequence intervals, intervals or distances greater than the reported drill hole length, inappropriate collar locations, and missing interval and coordinate fields. No significant discrepancies with the data were noted.

25.6 Resource Model

Lithology was included in modeling or resource estimation. Additional modeling should be conducted to include this information with the historic data to define the geology and alteration of the host rocks and create domains for further resource estimation.

25.6.1 Gold Dome

The variograms show a relatively high nugget but gold grades show acceptable spatial comparisons without any large grade differences within the deposit. They demonstrate a continuity of 40 ft. in the horizontal direction and 28 ft. downhole.

25.6.2 Granite

Drill hole spacing for the Gerle Gold drilling at Granite was 200 foot line spacing with drill holes at 100 foot centers. Variograms were constructed to test grade continuity in a number of different orientations with orientations of 0 deg, 30 deg, 150 deg containing too few closely spaced data points to accurately produce reliable variograms. The variograms showed a relatively high nugget effect but gold grades show acceptable spatial comparisons without any large grade differences within the deposit. They demonstrate a continuity of 78 ft. in the horizontal direction and 62 ft. downhole.

25.7 Resource Estimate

25.7.1 Gold Dome

Based on a cutoff of 0.0123 oz Au/ton, Indicated resources total 662,310 tons grading 0.036 oz Au/ton (23,843 ounces) and Inferred resources total 369,630 tons grading 0.037 oz Au/ton (30,784 ounces). The resources are classified entirely as Indicated and Inferred, which is primarily due to a) limited geologic data in the current database. It is recommended that the resource be re-evaluated once a geologic model can be incorporated into the resource to see if the resource can be reclassified.

25.7.2 Granite

Based on a cutoff of 0.0123 oz Au/ton, inferred resources total 1,656,990 tons grading 0.02 oz Au/ton (33,140 ounces). The resources are classified entirely as Inferred, which is primarily due to a) current 200 x 100-foot drill spacing; b) limited geologic data in the current database. It is recommended that the resource be re-evaluated once the additional drilling has been completed to see if the resource can be reclassified.

25.8 Metallurgy

A pilot scale heap leach operation at Gold Dome was conducted in 1983-4. Recoveries of 60% at 1 inch and 70% at 1/2 inch during a 30-day leach cycle were characteristic of processing the 60,000. tons excavated from the Gold Dome pit.

Bottle roll testing was conducted on two samples by McClelland Laboratories from the Granite deposit in 1987. Both samples were readily amenable to direct cyanidation at a nominal -200 mesh feed size. Recoveries were 92.9% and 92.3% respectively for the two samples at the end of the 96 hour tests.

Metallurgical testing continues to be important to the Frisco Project going forward. Additional column testing of both the Gold Dome and Granite material, from varying locations of the deposit e.g. surface vs depth, highly silicified vs low level of silicification, oxide vs sulfide should be performed to evaluate metallurgical variability and to confirm the representative nature of the samples already tested. This test work will provide additional information to lower risk and enhance operating recoveries when production begins.

Additional bulk density measurements need to be collected during metallurgical testing to characterize the different lithologies.

25.9 Exploration

The potential exists to expand both the Gold Dome and Granite resources through further drilling alongstrike extensions, offset zones, areas with low drill density, parallel structures, perpendicular structures, and feeder zones.

26 RECOMMENDATIONS

Provide particulars of recommended work programs and a breakdown of costs for each phase. If successive phases of work are recommended, each phase must culminate in a decision point. The recommendations must not apply to more than two phases of work. The recommendations must state whether advancing to a subsequent phase is contingent on positive results in the previous phase.

INSTRUCTION: In some specific cases, the qualified person may not be in a position to make meaningful recommendations for further work. Generally, these situations will be limited to properties under development or in production where material exploration activities and engineering studies have largely concluded. In such cases, the qualified person should explain why they are not making further recommendations.

The author considers the Frisco Project to be a project of merit and recommends that further work be conducted simultaneously with the planned final engineering and permitting efforts.

It is recommended that initial efforts be concentrated on the Gold Dome deposit. Additional drilling and testing of the Granite deposit could be done after the Gold Dome production is underway.

Additional metallurgical test work (column tests) on the Gold Dome is required in advance of final decisions on optimal crush size and scheduled time under leach.

26.1 Phase 1

As discussed in Section 14.0, there is potential to increase the classification of some of the estimated mineral resources to Measured status. It is recommended that additional drilling be conducted, in concert with pit planning efforts, in advance of actual mine operations.

Pre-production efforts should be concentrated on:

- Metallurgical work
- Engineering work
- Environmental and permitting work

Development work for the Frisco Gold Dome project is estimated to take eight-months to complete. The location of mining activities is planned to remain on patented land during the course of the initial Gold Dome project (Gold Dome deposit) followed by State Land (Granite Deposit) at a later date. No incursion onto Federal Land is envisaged so Federal permitting under the National Environmental Policy Act will not be required.

26.1.1 Metallurgical work

The leach time on future column tests should be extended to determine if recoveries greater than 80% can be achieved without additional crushing.

Continue the collection of specific gravity samples for the various rock types and mineralization styles. The accurate representation of specific gravity for the various rock types will provide a better estimation of the tonnages for both the mineralized and un-mineralized material.

26.1.2 Engineering work

Conceptual design of the mine operations and processing facilities should be started as soon as practical. Final engineering design would be completed in the first two months in concert with submission of permit applications to the State of Arizona. Grading for the leach pad, excavation for ponds, construction of the leach pad low permeability layer and placement of the geomembrane liner will be conducted simultaneously with the permitting approval process.

The design of the Gold Dome leach facilities will be finalized in accordance with the Arizona Department of Environmental Quality (AZ DEQ) prescriptive design guidance (Best Available Demonstrated Control Technology – BADCT) for heap leach facilities, process solution ponds, and non-stormwater (contingency stormwater storage) ponds.

The leach pad site is relatively flat due to the previous uses of the Gold Dome property as a staging area and as a source of aggregate for the re-construction of State Highway 68 and other area construction projects. Fine aggregates remain on site in stockpiles from previous production of rip rap and other coarse aggregate products. Fine-grained, low-permeability material is available locally and can be imported to serve as the soil liner bedding. The imported low permeability material will be placed to a thickness of eighteen (18) inches on a prepared foundation of graded and compacted fine aggregates. The liner bedding will be covered with a 2.0 millimeter (mm) linear low density polyethylene (LLDPE) geomembrane liner.

The pregnant and barren solution ponds will be constructed with upper and lower 1.5-mm high density polyethylene (HDPE) geomembranes placed on the low permeability imported material. An HDPE drain net will be placed between the geomembranes to serve as pond LCRS (leak collection and recovery systems).

The author recommends that the company conduct a preliminary hydrogeological study to support the future project water needs and to define a critical path process to achieving the water needs for development. The hydrological study should address test wells in groundwater source areas and the completion of the monitor wells for acquisition of the baseline data for permitting.

26.1.3 Environmental and permitting work

Environmental base-line studies should be started as soon as practical. It is recommended that a local environmental consulting firm, experienced in the area of permitting and societal issues in the area, be retained to assist in baseline and background work that will be required as inputs into the economic and mine planning process.

Work is required to detail potential acid rock drainage and/or metal leaching. AMD testing is required on each rock lithology to include an estimate of the quantity of each lithology that will be removed in both the exploration and production stages of the mine. This testing must include samples of both oxide and sulfide mineralized zones as well as potential low-grade stockpiles and waste rock that will be stored on site.

26.2 Budget

A budget of \$550,000 dollars for permitting, engineering and design, condemnation drilling, metallurgical studies, environmental studies and mine and facilities planning is recommended to move the Project through the development stage.

The anticipated costs for the recommended scope of work are presented below.

Table 26.2-1 Proposed Budget

Recommended Scope of Work	Detail	Cost (US\$)
Phase 1		
Federal & State Permitting		\$210,000
Engineering & Design		\$240,000
Drilling & Met verification tests		\$50,000
Legal, Accounting, Insurance Start-up		\$50,000
Total		\$550,000

27 References

ADMMR, m. c. (2013-07-31). *TyroMohaveT21NR20WSec6*. Arizona Geological Survey.

Bardswich, L. (2019). Personal Communication - Permitting.

- Bardswich, L. (2019, May 1). Frisco Met Sample. email communication to B. Carroll.
- Bardswich, L. J. (2019). Frisco cut off grades. personal communication.
- Bonelli, D. (1984). *Frisco Mine.* Arizona Geological Society 1984 Fall Field Trip Structure and Mineralization Kingman Area Arizona.
- Bonelli, D. (1987). Introductory Report on the Frisco Mine.
- Bonelli, D. (n.d.). *Metallurgy of Gold Dome Deposit*. Personal communication with LJ Bardswich.
- Campbell. (1981). Report on the Bonelli Gold Prospect.
- Carroll, B. (2016). *Technical Report on the Secret Pass Property, Mohave County Arizona*. NI43-101 Prepared for Arrowstar Resources Limited.
- Carroll, B. (2019, May 6). Phone conversation with D. Irving. personal communication with D. Irving.
- Clifton, C. B. (1980). Exploration procedure and controls of mineralization in the Oatman mining district, Oatman, ArizonaArizona: Soc. Mining Engineers of AIME Annual Meeting presentation, Las Vegas, Nevada, February 24-39, 1980. *SME Preprint No. 80-143*, (p. 44p).
- Darling, P. (2011). *SME Mining Engineering Handbook, Third Edition*. Society of Mining, Metallurgy, and Exploration, Inc. (SME).
- Durning, W. a. (1984). The geology and ore deposits of Oatman, Arizona. *Arizona Geological Society Digest, vol. 15,* 141-158.
- Fisher-Watt Mining Co., Inc. (November 15, 1985). *Geology, Alteration, Mineralization and Exploration* Potential of the Van Deemen Prospect, Mohave County, Arizona.
- Flesher, J. R. (2015). Frisco Project Initial Ore Resource Estimate for Frisco Gold Corporation.
- Gardner, E. D. (1936). *Gold mining and milling in the Black Mountains, Western Mohave County, Ariz.* U.S. Dept. of the Interior, Bureau of Mines, IC 6901.
- Graham, R. (1989). Frisco Agreement, Frisco Property, Mohave County, Arizona.
- Graham, R. (1991). Arabian mine property, Mohave County, Arizona: Loss of mineral value due to expansion of a State Highway right of way.

- Guilinger, J. (2018). 2018 Technical Report on the Gold Road Mine San Francisco District Oatman, Arizona. Para Resources Inc.
- Harris, R. (1998). A compilation of the geology and hydrologyof the Black Mountains-Bullhead City area, Arizona. ArizonaGeological Survey Open File Report, OFR-98-26, 1 map sheet, 40p.
- Hawthorn, G. (1988). *Progress Report #2 Laboratory Metallurgical Testing Frisco Granite Property, Mohave, California.* prepared for Gerle Gold Ltd.
- Housholder, E. (1964). Frisco Mines Appraisal. in-house report for Buena Vista Oil Company.
- Hrkac, R. (1987 December). *Progress Report on the Frisco Property Joint Venture Mohave County Arizona*. Gerle Gold for Mahogany Minerals Resources Inc.
- Hrkac, R. (1987). *Progress Report on The Frisco Property Joint Venture Mohave County Arizona*. Gerle Gold.
- Hrkac, R. (1987 September). *Progress Report on the Frisco Property Joint Venture Mohave County Arizona.* Gerle Gold for Mahogany Minerals Resources Inc.
- Hrkac, R. (1988 April). *Progresss Report on the Frisco Property Joint Venture Mohave County Arizona*. Gerle Gold for Mahogany Minerals Resources Inc.
- Huskinson, E. (1988). The Frisco Mine Mohave County Arizona. GSA 1988 Field Trip Guide.
- Irving, D. (1988). *Gold Dome Resource Inventory.* Doug Irving, Chapman, Wood & Griswold to Gerle Gold, Ltd.
- Irving, D. (1988). GOLD DOME RESOURCE INVENTORY FRISCO PROJECT MOHAVE COUNTY, ARIZONA. prepared for MAHOGANY MINERALS RESOURCES (U.S.A.) INC., GERLE GOLD (U.S.) INC.
- Irving, D. (1988, May 4). Gold Dome Revised Coordinates for F Series Holes. Personal notes to file.
- Irving, D. (1988, May 6). *Gold Dome Deposit, Frisco Project Mohave County, Arizona*. Memo to RA Hrkac, Gerle Gold Ltd.
- Irving, D. (2019, April 16). Frisco area drilling, Mohave Co., AZ. email communication to B. Carroll.
- Lausen, C. (1931). *Geology and Ore Deposits of the Oatman and Katherine Districts Arizona*. Arizona Bureau of Mines, Geological Series No 6, Bulletin No. 131.
- LEUANGTHONG, O. a. (n.d.). Dealing with high-grade data in resource estimation. J. S. Afr. Inst. Min. Metall. [online]. 2015, vol.115, n.1 [cited 2018-07-18], pp.27-36. Retrieved from <http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532015000100009&Ing=en&nrm=iso>

- Macy, F. (1987). *Report on Preliminary Cyanidation Test on GR Samples MLI Job No 1077.* McClelland Laboratories for Gerle Gold.
- Millar, C. (1973). Frisco Mining Property Arizona.
- Neimuth, N. J. (1985). *Frisco Gold Mohave T23NR20WSec16_A.* Arizona Department of Mines and Mineral Resources.
- Northern Vertex Moss Gold-Siver Mine, NW Arizona, USA. (2019, April 9). Retrieved from Northern Vertex Mining Corp: https://www.northernvertex.com/projects/moss-gold-silver-project/
- Richardson, P. (1987). The Frisco Mine, Mohave County, Arizona.
- Schrader, F. C. (1909). *Mineral Deposits of the Cerbat Range, Black Mountains, and Grand Wash Cliffs, Mohave County, Ariz.* US Geol Survey Bull 397 p 214.
- Schrader, F. C. (1917). Geology and ore deposits of Mohave County, Arizona. *Am. Inst. Min. Engineering Bull., No. 56*, 195-236.
- Sharp, W. (1974). Report on the Geology & Mining Eonomics of the Frisco Mine in the San Francisco Mining District. for CF Millar Limited.
- Stone, M., Thomas, D., Kilby, D., & Brownlee, D. (2014). *Technical Report on the 2014 Mineral Resource Update Moss Mine Gold-Silver Project, Mohave County, Arizona for Northern Vertex Corporation.*
- Westervelt, R. E. (1987). A summary review report on the Secret Pass property, Black Mountains, Mohave County, Arizona. Report prepared for IPC International Prospector Corp, Vancouver, BC 27 p.
- Wilson, E. C. (1967). *Arizona Lode Gold Mines and Gold Mining*. Arizona Bueau of Geology and Mineral Technology, Bulletin 137.

APPENDIX

Appendix A – Certificate of Author

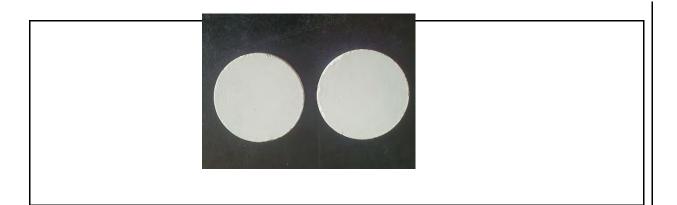
CERTIFICATE OF AUTHOR

Barbara Carroll, BSc CPG President of GeoGRAFX Consulting LLC 1790 E. River Rd., Suite 213 • Tucson, AZ 85718 Telephone: 520-744-4457 • Facsimile: 520-744-3066 Email: <u>bcarroll@geografxworld.com</u>

This certificate applies to the technical report titled "Technical Report on the Frisco Property, Mohave County, Arizona" (Technical Report), prepared for Frisco Gold Corporation and dated Dec 31, 2019.

I, Barbara Carroll, BSc CPG of Tucson, Arizona do herby certify:

- I am currently president of GeoGRAFX Consulting LLC, 1790 E. River Rd., Suite 213 Tucson, AZ 85718.
- I am a graduate from the Northern Arizona University, Flagstaff, Arizona with a B.Sc. Degree in Extended Geology (1975), and I have practiced my profession continuously since that time.
- I am a Certified Professional Geologist (#10987) in good standing with the American Institute of Professional Geologists and a registered member of the Society of Mining Metallurgy & Exploration (4100964RM). I am a member of the Arizona Geological Society.
- My relevant experience includes more than 40 years of field exploration, project evaluation, resource estimation and project management for both gold and base metal projects, including a number of gold deposits both in Canada, the United States and Mexico. Most recent experience is the author of technical reports on the Van Deemen project, and Secret Pass project in the Black Mountains, Arizona, both related to epithermal and detachment fault gold deposits on the same trend as the Van Deemen project.
- I certify that by reason of my education, affiliation with professional organizations and past relevant work experience, I fulfill the requirements to be considered a "qualified person".
- I am the author of the report entitled "Technical Report on the Frisco Property, Mohave County, Arizona" prepared for Frisco Gold Corporation and dated December 31, 2019. I take responsibility for all sections of the Technical Report.
- I have had no prior involvement with the property or project and am independent of Frisco Mining Corporation and its subsidiaries. I visited the project on June 6, 2019.
- As of the date of this certificate, to the best of my knowledge, information and belief, this Technical Report contains all the scientific and technical information that is required to be disclosed to make this Technical Report not misleading.
- The Technical Report contains information relating to mineral titles, permitting, environmental issues, regulatory matters and legal agreements. I am not a legal, environmental or regulatory professional, and do not offer a professional opinion regarding these issues.
- I consent to the use of this Technical Report for disclosure purposes of Frisco Gold Corporation.


Signed and dated January 6, 2020

Original document dated, signed and sealed by Barbara Carroll, CPG

Barbara Carroll, BSc CPG President GeoGRAFX Consulting, LLC. Appendix B – Kaolin Deposit Info

LAB TESTING REPORT Kaolin YB Cast for Sanitary Ware

Sample: YB Cast vs MRD Cast & KS85			
Supplier			
Date: 10 May 2019			
I. Sample Derscription			
No	San	nple	Percentage%
1	US	Clay	100
II. Results			
	US	Clay	
	1	2	
Residue on sieve (%)		1	
45 μm	-	-	
Fired properties (at 1200 oC)			
Whiteness (%)			
L	97.1	95.9	
	7	1 0.37	
a b	2.69	1.71	
	91.0		
Wr	2	90.1	
Water absorption (%)			
	-	-	
Shrinkage (%)			
	1.7	1.5	
Loss on Ignition (%)			
	5.4	5.6	

Appendix C – Drill Hole Locations

Hole_ID	Easting_AZSP	Northing_AZSP	Elev_ft	Depth	Azimuth	Dip	Year_Drilled	Company
A2	501097.7	1534581	0	0	0	0	0	
A3	500929.7	1534643	0	0	0	0	0	
A4	500592.3	1534558	0	0	0	0	0	
DH	501052.3	1533381	0	0	0	0	0	
DH	501234.8	1533376	0	0	0	0	0	
DH	501014.1	1533333	0	0	0	0	0	
DH	501012.7	1533288	0	0	0	0	0	
DH	501042.1	1533310	0	0	0	0	0	
DH	501702	1532391	0	0	0	0	0	
DH	501123.9	1532473	0	0	0	0	0	
DH	501246.6	1533268	0	0	0	0	0	
DH?	500987.9	1532566	0	0	0	0	0	
RC2	501271.2	1532558	3010	90	0	-90	0	FLMC
RC3	501374.2	1532563	2995	150	0	-90	0	FLMC
RC4	501480.8	1532568	299.77	130	0	-90	0	FLMC
F1	500729.2	1534261	0	40	0	0	1973	Red Dog
F11	501024.5	1534318	0	80	0	0	1973	Red Dog
F12	501024.5	1534318	0	80	0	0	1973	Red Dog
F13	501023.6	1534340	0	80	0	0	1973	Red Dog
F14	501023.4	1534360	0	70	0	0	1973	Red Dog
F15	501021.9	1534381	0	70	0	0	1973	Red Dog
F16	501064.9	1534337	0	42	0	0	1973	Red Dog
F17	501064.4	1534359	0	30	0	0	1973	Red Dog
F18	501062.9	1534379	0	30	0	0	1973	Red Dog
F19	501042.4	1534381	0	40	0	0	1973	Red Dog
F2	500742.2	1534240	0	20	0	0	1973	Red Dog
F20	501040.4	1534404	0	30	0	0	1973	Red Dog
F21	500712.9	1534275	0	60	0	0	1973	Red Dog
F22	500789	1534423	0	150	0	0	1973	Red Dog
F23	500833.6	1534462	0	150	0	0	1973	Red Dog
F24	500905.6	1534485	0	85	0	0	1973	Red Dog
F25	501001.3	1532453	3031	25	0	-90	1973	Red Dog
F26	501036.8	1532497	3029	70	0	-90	1973	Red Dog
F29	500870.6	1532449	3025	50	0	-90	1973	Red Dog
F3	501044.7	1534341	0	80	0	0	1973	Red Dog
F30	500914.8	1532393	3038	60	0	-90	1973	Red Dog
F31	500958.3	1532422	3031	60	0	-90	1973	Red Dog
F32	500880.2	1532430	3028	25	0	-90	1973	Red Dog

Hole_ID	Easting_AZSP	Northing_AZSP	Elev_ft	Depth	Azimuth	Dip	Year_Drilled	Company
F33	500882.9	1532502	3013	40	0	-90	1973	Red Dog
F34	500961.4	1532489	3026	70	0	-90	1973	Red Dog
F35	501019.6	1532415	3024	45	0	-90	1973	Red Dog
F4	501042.7	1534361	0	80	0	0	1973	Red Dog
F5	0	0	0	180	0	0	1973	Red Dog
F51	500798.3	1532434	3025	30	0	-90	1982	Red Dog
F52	500784	1532479	3017	30	0	-90	1982	Red Dog
F53	500864.9	1532337	3053	30	0	-90	1982	Red Dog
F54	500854	1532385	3040	40	0	-90	1982	Red Dog
F55	500844.4	1532439	3024	50	0	-90	1982	Red Dog
F56(F66A)	500833.3	1532489	3011	40	0	-90	1982	Red Dog
F57	500825.2	1532536	2998	40	0	-90	1982	Red Dog
F58	500812.1	1532586	2995	30	0	-90	1982	Red Dog
F59	500914	1532347	3046	30	0	-90	1982	Red Dog
F60	500904.6	1532397	3037	40	0	-90	1982	Red Dog
F61	500892.8	1532446	3024	50	0	-90	1982	Red Dog
F63	500871.8	1532550	3000	70	0	-90	1982	Red Dog
F64	500863.1	1532596	3007	80	0	-90	1982	Red Dog
F66	500954.4	1532405	3033	37	0	-90	1982	Red Dog
F67	500943.8	1532456	3027	45	0	-90	1982	Red Dog
F68	500933.8	1532507	3021	70	0	-90	1982	Red Dog
F69	500924	1532554	3009	80	0	-90	1982	Red Dog
F70	500918.3	1532609	3017	85	0	-90	1982	Red Dog
F72	501000.7	1532413	3027	45	0	-90	1982	Red Dog
F73	500997	1532465	3031	60	0	-90	1982	Red Dog
F74	501000.3	1532517	3037	66	0	-90	1982	Red Dog
F75	500968.4	1532567	3021	87	0	-90	1982	Red Dog
F76	500962.5	1532615	3023	100	0	-90	1982	Red Dog
F78	501040.6	1532425	3017	60	0	-90	1982	Red Dog
F79	501044.6	1532475	3031	95	0	-90	1982	Red Dog
F80	501031.6	1532524	3044	120	0	-90	1982	Red Dog
F83	501044.6	1532472	3018	50	0	-90	1982	Red Dog
85-10	501101	1532520	2988	100	0	-90	1985	FLMC
85-11	500908.2	1532659	2991	120	0	-90	1985	FLMC
85-12	500848.3	1532680	2998	110	0	-90	1985	FLMC
85-13	500785.4	1532710	2992	100	0	-90	1985	FLMC
85-14	501013.7	1532474	3005	120	0	-90	1985	FLMC
85-15C	501146.3	1532419	2991	90	0	-90	1985	FLMC
85-18	501069.6	1532466	2997	0	0	-90	1985	FLMC
85-9	501110.5	1532453	2986	75	0	-90	1985	FLMC

Hole_ID	Easting_AZSP	Northing_AZSP	Elev_ft	Depth	Azimuth	Dip	Year_Drilled	Company
BH5185-4	502047.4	1531910	0	0	0	0	1985	FLMC
DH5185-1	502175.3	1532062	0	0	0	0	1985	FLMC
DH5185-2	502140.3	1531998	0	0	0	0	1985	FLMC
DH5185-3	502096.9	1531961	0	0	0	0	1985	FLMC
FR87-1	501184.4	1534140	3305	212.5	0	-90	1987	Gerle Gold JV
FR87-2	501420.6	1533715	3115	170	0	-90	1987	Gerle Gold JV
FR87-3	501563.8	1533377	3059	140.7	0	-90	1987	Gerle Gold JV
FR87-4	501014.5	1532820	3066.4	368	0	-90	1987	Gerle Gold JV
FR87-5	501242.5	1532523	2992.5	268	0	-90	1987	Gerle Gold JV
GC87-1	501332.1	1533531	0	95	0	-90	1987	Gerle Gold JV
GC87-2	501275.3	1533494	0	70	0	-90	1987	Gerle Gold JV
GC87-3	501228.1	1533497	0	65	0	-90	1987	Gerle Gold JV
GC87-4	501178.6	1533494	0	60	0	-90	1987	Gerle Gold JV
GC87-5	501131.4	1533520	0	60	0	-90	1987	Gerle Gold JV
GC87-6	501082	1533558	0	70	0	-90	1987	Gerle Gold JV
GD87-1	501270.3	1532660	3008.5	200	0	-90	1987	Gerle Gold JV
GD87-2	501371.8	1532668	3008.7	200	0	-90	1987	Gerle Gold JV
GD87-3	501370.9	1532775	3018.4	260	0	-90	1987	Gerle Gold JV
GD87-4	501368.3	1532888	3025.1	140	0	-90	1987	Gerle Gold JV
GD87-5	501381.1	1532562	2999.8	140	0	-90	1987	Gerle Gold JV
GD87-6	500878.6	1532605	2986.4	140	0	-90	1987	Gerle Gold JV
GD87-7	500796.2	1532661	2984.1	200	0	-90	1987	Gerle Gold JV
GC88-1	501032.6	1533699	3140	30	0	-90	1988	Gerle Gold JV
GC88-10	501060.4	1534148	3357	130	0	-90	1988	Gerle Gold JV
GC88-11	501125.5	1534148	3335	120	0	-90	1988	Gerle Gold JV
GC88-12	500775.5	1534150	3335	110	0	-90	1988	Gerle Gold JV
GC88-2	501082.6	1533698	0	70	0	-90	1988	Gerle Gold JV
GC88-3	501132.5	1533698	3150	80	0	-90	1988	Gerle Gold JV
GC88-4	501182.5	1533698	3150	90	0	-90	1988	Gerle Gold JV
GC88-5	501232.5	1533697	3145	90	0	-90	1988	Gerle Gold JV
GC88-6	501282.5	1533697	3140	70	0	-90	1988	Gerle Gold JV
GC88-7	501085.5	1534148	3356	140	0	-90	1988	Gerle Gold JV
GC88-8	501008.4	1534139	3355	110	0	-90	1988	Gerle Gold JV
GC88-9	501038.4	1534141	3357	120	0	-90	1988	Gerle Gold JV
GD88-1	501271.9	1532513	2991.8	100	0	-90	1988	Gerle Gold JV
GD88-10	501523.5	1532415	2993.9	80	0	-90	1988	Gerle Gold JV
GD88-11	501479.3	1532613	3004.8	180	0	-90	1988	Gerle Gold JV
GD88-12	501673.8	1532354	2979.2	175	0	-90	1988	Gerle Gold JV
GD88-13	501374.3	1532468	2992.3	120	0	-90	1988	Gerle Gold JV
GD88-14	501424.1	1532462	2992.5	100	0	-90	1988	Gerle Gold JV

Hole_ID	Easting_AZSP	Northing_AZSP	Elev_ft	Depth	Azimuth	Dip	Year_Drilled	Company
GD88-15	501460.9	1532466	2993.1	70	0	-90	1988	Gerle Gold JV
GD88-16	501887.9	1532255	3025.8	170	0	-90	1988	Gerle Gold JV
GD88-17	502197.4	1532161	3075	120	0	-90	1988	Gerle Gold JV
GD88-18	501529.1	1532462	2995.4	110	0	-90	1988	Gerle Gold JV
GD88-19	501627.9	1532469	3001.5	120	0	-90	1988	Gerle Gold JV
GD88-2	501321.2	1532511	3008.7	200	0	-90	1988	Gerle Gold JV
GD88-20	501573.7	1532468	3000.1	120	0	-90	1988	Gerle Gold JV
GD88-21	501772.8	1532510	2999.8	160	0	-90	1988	Gerle Gold JV
GD88-22	501872	1532513	3003.9	180	0	-90	1988	Gerle Gold JV
GD88-23	501681.6	1532616	3013.4	180	0	-90	1988	Gerle Gold JV
GD88-24	502203.2	1532291	3080	140	0	-90	1988	Gerle Gold JV
GD88-3	501371.6	1532512	2995.1	140	0	-90	1988	Gerle Gold JV
GD88-4	501420.2	1532515	2996.2	120	0	-90	1988	Gerle Gold JV
GD88-5	501472.5	1532514	2997.2	140	0	-90	1988	Gerle Gold JV
GD88-6	501521.7	1532515	2995.7	140	0	-90	1988	Gerle Gold JV
GD88-7	501625.3	1532516	3006	200	0	-90	1988	Gerle Gold JV
GD88-8	501698.1	1532517	3003	200	0	-90	1988	Gerle Gold JV
GD88-9	501470.3	1532413	2989.9	75	0	-90	1988	Gerle Gold JV
GD89-1	501475.3	1532571	0	175	0	-90	1989	Mohave Mining
GD89-10	500774.3	1532401	0	65	0	-90	1989	Mohave Mining
GD89-11	500774.9	1532501	0	95	0	-90	1989	Mohave Mining
GD89-12	500761.6	1532601	0	95	0	-90	1989	Mohave Mining
GD89-13	501284.8	1532384	0	70	0	-90	1989	Mohave Mining
GD89-14	501324.1	1532410	0	82	0	-90	1989	Mohave Mining
GD89-15	501074.3	1532449	0	105	0	-90	1989	Mohave Mining
GD89-16	501074.8	1532498	0	95	0	-90	1989	Mohave Mining
GD89-17	501173.8	1532464	0	45	0	-90	1989	Mohave Mining
GD89-18	501075	1532548	0	95	0	-90	1989	Mohave Mining
GD89-19	501175.1	1532551	0	125	0	-90	1989	Mohave Mining
GD89-2	501476	1532696	0	180	0	-90	1989	Mohave Mining
GD89-20	501075.6	1532618	0	175	0	-90	1989	Mohave Mining
GD89-21	501175.4	1532610	0	195	0	-90	1989	Mohave Mining
GD89-22	500975.5	1532599	0	115	0	-90	1989	Mohave Mining
GD89-23	500974.9	1532553	0	85	0	-90	1989	Mohave Mining
GD89-24	500990.8	1532502	0	135	0	-90	1989	Mohave Mining
GD89-25	501225.9	1532410	0	55	0	-90	1989	Mohave Mining
GD89-26	500876	1532568	0	100	0	-90	1989	Mohave Mining
GD89-27	500874.9	1532500	0	55	0	-90	1989	Mohave Mining
GD89-28	500874.2	1532400	0	55	0	-90	1989	Mohave Mining
GD89-29	501274.5	1532474	0	75	0	-90	1989	Mohave Mining

Hole_ID	Easting_AZSP	Northing_AZSP	Elev_ft	Depth	Azimuth	Dip	Year_Drilled	Company
GD89-3	501576	1532695	0	200	0	-90	1989	Mohave Mining
GD89-30	501324.1	1532469	0	85	0	-90	1989	Mohave Mining
GD89-31	501424.4	1532432	0	45	0	-90	1989	Mohave Mining
GD89-32	501424.9	1532646	0	185	0	-90	1989	Mohave Mining
GD89-33	501626.4	1532594	0	185	0	-90	1989	Mohave Mining
GD89-34	501576	1532639	0	205	0	-90	1989	Mohave Mining
GD89-35	501524.1	1532545	0	175	0	-90	1989	Mohave Mining
GD89-36	501426.2	1532597	0	165	0	-90	1989	Mohave Mining
GD89-37	500975.9	1532674	0	125	0	-90	1989	Mohave Mining
GD89-4	501575.3	1532595	0	280	0	-90	1989	Mohave Mining
GD89-5	501675.9	1532694	0	155	0	-90	1989	Mohave Mining
GD89-6	501771.2	1532794	0	165	0	-90	1989	Mohave Mining
GD89-7	501877.2	1532893	0	200	0	-90	1989	Mohave Mining
GD89-8	0	0	0	105	0	0	1989	Mohave Mining
GD89-9	500773.7	1532348	0	75	0	-90	1989	Mohave Mining

State Section 16

HOLE_ID	Easting_AZSP	Northing_AZSP	Elev_FT	Depth	Azimuth	Dip	Year_Drilled	Company
DH	499901.6	1529689	2788.247	0	0	-90	0	
DH1	499750.8	1529626	2780	0	0	-90	0	
B13	499799.5	1529384	2776.487	500	0	-90	1980	Red Dog Mining
B14	499727.4	1529510	2770	230	0	-90	1980	Red Dog Mining
B15	499706.2	1529414	2770	500	0	-90	1980	Red Dog Mining
B16	499985.8	1529538	2790	500	0	-90	1980	Red Dog Mining
B17	499880.6	1529572	2782.086	500	0	-90	1980	Red Dog Mining
B2	501160	1530217	2865.166	0	0	-90	1980	Red Dog Mining
B5	500990.6	1530100	2850.37	0	0	-90	1980	Red Dog Mining
B6	499840.5	1529474	2780	300	0	-90	1980	Red Dog Mining
B7	500618.8	1529290	2830	0	0	-90	1980	Red Dog Mining
B9	499147.7	1529135	2736.161	0	0	-90	1980	Red Dog Mining
BB-6?	499664.7	1529535	2770	300	0	-90	1980	Red Dog Mining
BB82-10	499573.8	1529094	2760	0	0	-90	1982	FLMC
BB82-4	501887.3	1530475	2897.416	80	0	-90	1982	FLMC
BB82-6	501019.8	1530207	2870.115	80	0	-90	1982	FLMC
BB82-7	500751.7	1529751	2827.905	0	0	-90	1982	FLMC
BB82-8	500712.8	1529437	2820	80	0	-90	1982	FLMC
DH82-5?	500876.4	1530028	2840.932	0	0	-90	1982	FLMC
DH82-7?	500876.4	1530028	2840.932	0	0	-90	1982	FLMC
BB83-10	499625.7	1529526	2770	60	0	-90	1983	FLMC
BB83-14	500508.3	1529241	2829.042	130	0	-90	1983	FLMC
BB83-15	500737.1	1529329	2840	130	0	-90	1983	FLMC
BB83-16	500577.2	1529083	2817.761	130	0	-90	1983	FLMC
BB83-6	499714.7	1529478	2770	100	0	-90	1983	FLMC
BB83-6?	499693.6	1529341	2770.304	0	0	-90	1983	FLMC
BB83-8	499746.1	1529516	2770	110	0	-90	1983	FLMC
87-A	499508.2	1529644	2770.345	50	0	-90	1987	Gerle Gold
87-B	499554.2	1529555	2770	183	0	-90	1987	Gerle Gold
87-C	499599.5	1529465	2770	180	0	-90	1987	Gerle Gold
87-D	499645.5	1529374	2770	245	0	-90	1987	Gerle Gold
87-E	499692.2	1529286	2770	340	0	-90	1987	Gerle Gold
87-F	499684.9	1529731	2780	50	0	-90	1987	Gerle Gold
87-G	499731.6	1529641	2779.127	170	0	-90	1987	Gerle Gold
87-H	499778.3	1529554	2774.89	330	0	-90	1987	Gerle Gold
87-I	499825.7	1529464	2780	260	0	-90	1987	Gerle Gold
87-J	499871	1529375	2781.96	303	0	-90	1987	Gerle Gold
87-J1	499918.4	1529283	2780	503	0	-90	1987	Gerle Gold
87-K	499867.1	1529820	2790.659	50	0	-90	1987	Gerle Gold

HOLE_ID	Easting_AZSP	Northing_AZSP	Elev_FT	Depth	Azimuth	Dip	Year_Drilled	Company
87-L	499912.4	1529732	2790	180	0	-90	1987	Gerle Gold
87-M	499959.1	1529642	2790	180	0	-90	1987	Gerle Gold
87-N	500003.8	1529554	2790	150	0	-90	1987	Gerle Gold
87-0	500051.2	1529466	2790	300	0	-90	1987	Gerle Gold
87-P	500095.2	1529376	2791.339	350	0	-90	1987	Gerle Gold
87-Q	500139.8	1529286	2790	503	0	-90	1987	Gerle Gold
87-R	499288	1529639	2770	75	0	-90	1987	Gerle Gold
87-S	499343.9	1529533	2768.508	245	0	-90	1987	Gerle Gold
87-T	499379.4	1529462	2760	200	0	-90	1987	Gerle Gold
87-U	499426.1	1529373	2760	200	0	-90	1987	Gerle Gold
87-V	499470.8	1529285	2758.154	250	0	-90	1987	Gerle Gold
87-W	499514.1	1529195	2758.565	300	0	-90	1987	Gerle Gold
87-X	499561.4	1529104	2757.793	503	0	-90	1987	Gerle Gold
AA	501079.6	1530317	2883.347	50	0	-90	1987	Gerle Gold
вв	501122.3	1530227	2875.7	80	0	-90	1987	Gerle Gold
СС	501164.3	1530137	2857.754	120	0	-90	1987	Gerle Gold
DD	501209.6	1530047	2857.783	165	0	-90	1987	Gerle Gold
EE	501253.6	1529954	2859.561	200	0	-90	1987	Gerle Gold
FF	501294.9	1529866	2864.61	200	0	-90	1987	Gerle Gold
FR87-6	499701.1	1529391	2770	77	0	-90	1987	Gerle Gold
FR87-7	499643.7	1529476	2770	202	0	-90	1987	Gerle Gold
FR87-8	501069.8	1530164	2859.38	123	315	-65	1987	Gerle Gold
FR87-9	501072.7	1530161	2858.984	116.6	0	-90	1987	Gerle Gold
Ш	500984.8	1530047	2845.913	120	0	-90	1987	Gerle Gold
NN	501077.9	1530093	2852.711	100	0	-90	1987	Gerle Gold
00	501256.7	1530182	2860	160	0	-90	1987	Gerle Gold
РР	501344.4	1530226	2864.456	160	0	-90	1987	Gerle Gold
QQ	500900.5	1530003	2840	110	0	-90	1987	Gerle Gold
RR	500719	1529912	2830	100	0	-90	1987	Gerle Gold
SS	501368.8	1530127	2864.968	100	0	-90	1987	Gerle Gold
тт	500855.4	1529867	2835.47	175	0	-90	1987	Gerle Gold
WP1	499020.8	1529059	2727.679	200	0	-90	1987	Gerle Gold
WP2	498975.4	1529147	2730.128	225	0	-90	1987	Gerle Gold
WP3	498930.7	1529237	2732.03	225	0	-90	1987	Gerle Gold
WP4	498886.1	1529328	2732.257	75	0	-90	1987	Gerle Gold
AAA	500048.6	1529911	2804.969	120	0	-90	1988	Gerle Gold
BBB	500091.3	1529827	2801.88	200	0	-90	1988	Gerle Gold
CCC	500138.6	1529734	2800	200	0	-90	1988	Gerle Gold
DDD	500182.6	1529643	2800	200	0	-90	1988	Gerle Gold
EEE	500228.6	1529556	2800	300	0	-90	1988	Gerle Gold

HOLE_ID	Easting_AZSP	Northing_AZSP	Elev_FT	Depth	Azimuth	Dip	Year_Drilled	Company
FFF	500273.3	1529466	2803.774	300	0	-90	1988	Gerle Gold
LL	501478.2	1530405	2875.262	150	0	-90	1988	Gerle Gold
WP5	498704.3	1529228	2720	120	0	-90	1988	Gerle Gold
WP6	498748.4	1529138	2720	180	0	-90	1988	Gerle Gold
WP7	498793.2	1529054	2720	240	0	-90	1988	Gerle Gold
WP8	498838	1528966	2719.473	380	0	-90	1988	Gerle Gold
GE89-1	501500.8	1530362	2874.924	105	0	-90	1989	Mohave Mining
GE89-2	501610.6	1530364	2883.057	150	0	-90	1989	Mohave Mining
GE89-3	501457.9	1530228	2873.054	145	0	-90	1989	Mohave Mining
GE89-4	501569.9	1530231	2880	145	0	-90	1989	Mohave Mining
GE89-5	501761.3	1530296	2890	135	0	-90	1989	Mohave Mining
GE89-6	501785.9	1530231	2890	195	0	-90	1989	Mohave Mining

Appendix D – 1987 Metallurgical Testing

			TIT	- Chu	aun	הה	ברף הי
3	1	1 5	Lar	BOCA	MUL	TES,	ang.
	H. J.	iation with Heinen Indstrom	1275 Klep	pe Lane #4	• Sparks, NV	⁷ 89431 • (702	2) 356 - 1300
				Septem	ber 17,	1987	
GER	Ray Hrka LE GOLD, -675 West	C LTD. Hastings					
Van	couver, B	S.C. V6B1N					
Dea	r Ray:						
obt GR-	Enclose ained fro 1 B, and	d is our rep m testwork (GR-2 B.	conducte	cerning d on tw	metallu o ore sa	rgical r mples id	esults entified as
tes	Enclose twork.	d also is ou	ur invoi	ce (MLI	Job No.	1077) f	or the
anv	We appr further	eciate the cassistance,	pportun please	ity to feel fr	serve yo ee to co	u. If w ntact us	e can be of
				Sincer	elv.		
				STHEFT			
				DAGA	C. M. Macy A. Macy pervisor	71	
				DAGA	CO. Mar	71	
	TRANTE	Zue		DAGA	CO. Mar	71	
	BULK S	<u> </u>	סיב	DAGA	CO. Mar	71	
		<u> </u>	יסאב סאב	DAGA	C.D. WOUL A. Macy pervisor GRANITE	Pit Pit	
		<u> </u>	טחב חים	Dhaw Frank Lab Su	CO. WOUL A. Macy pervisor	Pit Pit	
		<u> </u>	יסאב מאב	Dhaw Frank Lab Su	C.D. WOUL A. Macy pervisor GRANITE	Pit Pit	

R. E. Lindstrom

1275 Kleppe Lane #4 - Sparks, NV 89431 - (702) 356 - 1300

Report on Preliminary Cyanidation Test on GR Samples MLI Job No. 1077 September 17, 1987

for

Mr. Ray Hrkac GERLE GOLD, LTD. 904-675 West Hastings Vancouver, B.C. V6B1N

SUMMARY

Bottle roll tests were conducted on two samples (GR-1 and GR-2B) to determine recovery, recovery rate, and reagent requirements. Both samples were readily amenable to direct cyanidation at a nominal 200 mesh feed size. Gold recovery was 92.9 percent for GR-1B, and 92.3 percent for GR-2B. Gold recovery rates were fairly rapid, and the majority of the values were extracted in 48 hours. However, it is not likely recovery rates would be as encouraging if feed size was increased. Cyanide consumption was low for both samples. Lime requirements were high at from 11.2 to 13.6 pounds per ton of ore.

Silver recovery was 73.9 percent for GR-1B and 67.7 percent for GR-2B. Recovery rates were rapid with the majority of the values being extracted in 24 hours.

SAMPLE PREPARATION AND HEAD ASSAY

Two kilograms of each sample were received at a nominal 200 mesh feed size. Each sample was blended and split to obtain samples for direct head assay and bottle roll tests. Approximately 1 kg of each sample was split out for the cyanidation tests.

Each sample was assayed directly, using conventional fire assay fusion procedures to determine precious metal content. Results from the head assays are shown in table 1. Gerle Gold, Ltd./Mr. Hrkac MLI Job No. 1077 - September 17, 1987

Table 1. - Head Assay Results

Sample		ton
Designation	Au	Ag
GR-1B	0.016	0.35
GR-2B	0.016	0.34

AGITATED CYANIDATION TEST PROCEDURE AND RESULTS

Agitated cyanidation (bottle roll) tests were conducted on two samples (GR-1B and GR-2B) to determine gold recovery, recovery rate, and reagent requirements.

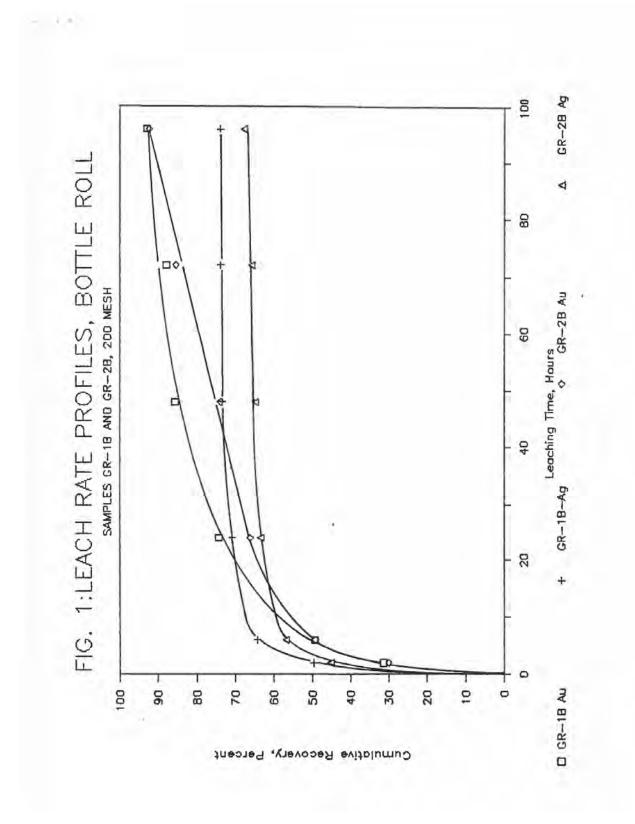
Approximately 1 kg of ore was mixed with water to achieve 40 weight percent solids. The natural ore pH was measured before adjusting the pH to 11.0 with lime. Sodium cyanide, equivalent to 2.0 pounds per ton of solution, was then added to the alkaline pulps.

Leaching was conducted by rolling the pulps in bottles on the laboratory rolls for 96 hours. Rolling was suspended briefly after 2, 6, 24, 48, 72, and 96 hours to allow the pulps to settle so a sample of the pregnant solution could be taken for analysis. Pregnant solution volumes were measured and samples were taken for analysis by A.A. methods. Cyanide concentration and pH were determined for each pregnant solution. Make-up water, equivalent to that withdrawn, was added to the pulps. Cyanide concentrations were restored to initial values. Lime was added when necessary to bring the solution back to a pH of 11.0. Rolling was then resumed.

Overall metallurgical results from the bottle roll tests are shown in table 2. Leach rate profiles are shown in figure 1.

Gerle Gold, Ltd./Mr. Hrkac MLI Job No. 1077 - September 17, 1987

Table	Table 2	÷	Overal1	Met	tallurgica	11	Results,	Bottle	Roll	Tests,
1.100	-	_	Gerle G	old	Samples,	As	received	1200	Mesh	Feed


	1	S	ample	
Metallurgical Results	GR-1	B	GR-2B	
Extraction: pct of total	Au	Ag	Au	Ag
in 2 hours	31.4	49.6	30.0	45.2
in 6 hours	49.3	64.3	49.2	56.8
in 24 hours	74.3	70.9	66.2	63.5
in 48 hours	85.7	73.5	73.8	64.8
in 72 hours	87.9	73.9	92.3	67.7
in 96 hours	92.9	73.9	92.3	67.7
Extracted, oz/ton ore	0.013	0.17	0.012	0.21
Tail Assay, oz/ton ore	0.001	0.06	0.001	0.10
Calculated Head, oz/ton ore	0.014	0.23	0.013	0.31
Assayed Head, oz/ton ore	0.016	0.35	0.016	0.34
Cyanide consumed, 1b/ton ore	0.	13	0.	42
Lime Added, 1b/ton ore	13.	6	11.	2
Final Solution pH	11.	1	10.	9
Natural pH (40 pct. solids)	8.	3	8.	7

Overall metallurgical results show that samples GR-1B and GR-2B are readily amenable to direct cyanidation at a nominal 200 mesh feed size. Gold recoveries were 92.9 and 92.3 percent, respectively. The initial extraction rate (to 6 hours) was fairly rapid, recovering 49 percent of the values in this time period. Silver recoveries were also good at 73.9 and 67.7 percent, respectively. The majority of the silver values were extracted in 24 hours.

Cyanide consumption was low for each sample and ranged from 0.13 to 0.42 pounds per ton of ore. Consumption Rates were consistent throughout the leaching cycle for each sample.

Lime requirements were high for both samples at from 11.2 to 13.6 pounds per ton of ore. The majority of lime was added prior to cyanidation, in order to achieve pH 11.0 before starting the leach. Maintaining pH was not difficult even though lime was added during the leaching cycles.

-3-

-5-

Gerle Gold, Inc./Mr. Hrkac MLI Job No. 1077 - September 17, 1987

CONCLUSIONS

- Samples GR-1B and GR-2B are readily amenable to direct cyanidation at a 200 mesh feed size with respect to gold recoveries.
- Silver recoveries were acceptable although not as high as gold recoveries.
- Cyanide consumptions were low.
- Lime requirements were high.

RECOMMENDATIONS

We recommend that preliminary cyanidation tests be conducted on representative samples at a coarser feed size (drill cuttings or coarser) to determine the ores amenability to heap leaching treatment. Column leach tests on crushed feeds (core or bulk samples) should be conducted to determine optimum heap leach feed size, if the preliminary results are encouraging.

ranka. wae

Frank A. Macy ULaboratory Supervisor

Appendix E – 1988 Metallurgical Testing

GARY W. HAWTHORN CONSULTING MINERAL PROCESSING ENGINEER 1128 W. 15th St. North Vancouver, B.C. V7P 1M9 Tel. (604) 984-6493 1 1 (604) 986-MILL ġ GERLE GOLD LTD Curken D 904-675 W. HASTINGS ST Current of VANCOUVER, B.C. 1 1000 PROGRESS REPORT # 2 LABORATORY METALLURGICAL TESTING 126-166 FRISCO GRANITE PROPERTY Lo Ares MOHAVE, CALIFORNIA 1000 G. HAWTHORN P. ENG **AND** ary W. Howthorn Lussie APRIL 16, 1988 WELL AND A

	<mark>ana an ann an an an an ann an ann an ann an a</mark>	
		INDEX
-	1.0 INTRODU	ICTION
	2.0 SAMPLE	
豒	3.0 MICROSC	:OPY
	4.0 TESTING	ş
	4.2	Cyanidation Reagent Consumption Solution Fouling
	5.0 PROCESS	; FLOWSHEET
	6.0 CONCLUS	JIONS
	7.0 RECOMME	ENDATIONS
	APPENDIX	
	Test	Purpose
	FGD-L-1 FGD-L-2 FGD-L-3 FGD-L-4 FGD-L-5 FGD-L-6 FGD-L-7	C-1 / - 1/4 # / 24 hr C-2 / " " C-3 / " " C-2 / ground / 24 hr C-1 / crushed / 6 days C-4 / coarse rock / bucket test / 8 days C-5 / coarse rock / bucket test / 8 days
	FGC-L-1 FGC-L-2 FGC-L-3	C-1 / - 1/4 # / 24 hr C-2 / " " $C-1 / ground / "$
	FG-L-4	C-4 / coarse rock / bucket test / 8 day
Į		
4		
Ŗ		

and where the second	مر میرد در اینام از در میرد این در والی در میروند این مراجع میرد این میرو مر <u>ا است.</u> اعداد این	an an ann an ann an ann an ann an ann ann ann ann an a
	1.0 INTRODUCTION	
	The writer was retained to perform mineralized samples from the Frisco prop	metallurgical testing on erty.
	This second progress report details testing on several samples from the Go Granite zones.	laboratory cyanidation 1d Crown, Gold Dome, and
	The testing included bottle roll and buc	ket testing procedures.
	2.0 SAMPLE	
	The following samples were used in the t	esting.
	GRANITE ZONE	
	Sample Au oz/t	
	L.G. / Hrkac / Feb 26/88 .027	
	GOLD CROWN	
	Sample Grade - Au oz/t Description	
	C-1 .208 samples 76342 C-2 .081 " 76501	2 - 76368 76502
	GOLD DOME	
	C-1 .05 samples 75539 C-2 .11 " 75554	- 75565
	C-4 .04 " 75532	2 - 75980 2B
	C-5 .03 "75540) - 75544
	GRANITE	
	C-4 .03 sample R.A.	Hrkac / Feb. 26, 1988
	These samples were provided by R.A. January – March, 1988.	Hrkac during the period
	3.0 MICROSCOPY	
	No microscopy has been done, and none ap	ppears to be required.

1999 - Charles Charles Charles Charles Charles and Charles Charles Charles Charles Charles Charles Charles Char Anno 1997 - Charles Char

4.0 TESTING

4.1 Cyanidation

A total of 11 cyanidation tests on the above samples have determined the following:

GOLD CROWN

(1) Potentially, the Gold Crown zone mineralization will respond well to cyanidation after grinding.

Based upon the C-1 sample, a Au recovery of + 90 % is achievable at a 50 % - 200 mesh grind, on a feed which grades .15 oz/t Au.

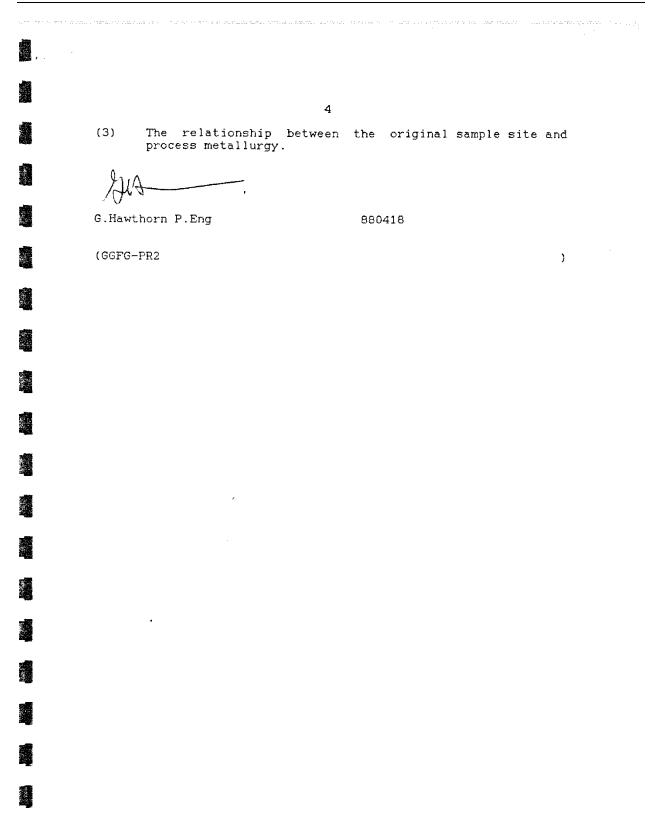
Au recovery on the same sample which had been crushed to
 - 3 mesh (1/4 ") was a dismal 23 %, after 24 hr.

GOLD DOME

)

- The grind sensitivity of the Gold Dome samples was not consistent.
 - However, as a general statement, any attempt to heap leach the material will require crushing to at least 1".

Even then recoveries may not exceed 50 % on the overall zone.


(2) Laboratory testing, by the writer, has not indicated that the reported 60 - 70 % Au recovery is regularly achievable.

However, the wide variability of the results, demonstrates the lack of homogeniety in the deposit.

I do not have any reason to disbelieve the reported results, but on the samples which I have tested, I have not obtained those high recoveries, and I cannot project these results, except with fine crushing.

(3) The testing indicated that leaching is completed, on coarse rock, within 5 days.

2	
	Э
	GRANITE
	 A very low 11 % Au recovery, was achieved in 8 days on a - 6 " sample, which was bucket leached.
	The tailing screen analysis suggests that crushing will significantly increase the Au recovery, to perhaps 65 %, based upon a .027 oz/t feed grade.
	4.2 Reagent Consumption
	The consumption of NaCN was variable, ranging from .04 to 1.6 kg/t, but more typically .58 kg/t.
	Lime (CaOH2) consumption was a modest .5 kg/t.
	4.3 Solution Fouling
-	Some of the pregnant solutions were assayed for Cu and Fe .
4	Cu concentration ranged from .2 - 23 ppm.
	Fe concentration was less than 2 ppm.
- 19 	5.0 PROCESS FLOWSHEET
	See 6.0 Conclusions.
	6.0 CONCLUSIONS
	Some of the material was sufficiently high grade to support the higher cost of conventional dynamic cyanidation, but the majority, at < .06 oz/t Au can only suppost the lower cost of heap leaching.
1	The results to date indicate that, after fine crushing, and agglomeration (?), a recovery of 65 % can be achieved on some of the deposits.
	These would include: GD C-2 (?), GD C-5, and G C-4.
	The undicated overall consumption of NaCN, at .8 kg/t, reflects an operating cost of $\$ C 1.60 / ton.
	7.0 RECOMMENDATIONS
	Additional bench scale cyanidation testing will be required to determine the folowing:
	(1) The optimum crush size.
	(2) The possible requirement for agglomeration, and the appropriate operating parameters.

CYANIDATION	G-FG-	L-4			ε	20315	
CLIENT:	Gerle		PRC	JECT: F	risco Gra	níte	
SAMPLE:	C-4 (L.G R.A. Hrk		Zone	-Feb.26	,1988,		
OBJECTIVE:	Determin					ng using	an 8
	-pH 11.0 -Bucket	-11.5 Leach/ 70 leach ta			.5 g/l Na sh.	CN .	
TEST CONDIT	IONS: Cy	anidation					
Time	Addit	ion — gm	N	aCN g/l	:	рH	
Day	NaCN	Ca(OH)2			Initia	l Final	-
L-0 -1	1.75 .3	.4		- .45	8.2 10.2		_
-2 -3 :	. 7	1.5		.3	10.2 10.3 10.3	11.4	
-4	.5	1.5		.35	10.5		
-5 -7	1.0 .7	1.0 1.0		.25	10.1 10.3		
-8		_		.40		10.5	
REAGENT CON	SUMPTION	: Cvanida	tion				
Reagent			g/t				
NaCN	4.0		.55				
Ca (0H) 2	6.9		1.0				
METALLURGIC	AL CALCU	LATIONS:					
		Assay -	oz/t	D	istributi	on - %	
Froduct		Au	Ag		Αu	Ag	
Preg sol'n Leach tlg	3493 7172	.004			10.9 89.1		
Feed	7172	(.027		>	100.0		

na se se ekennik	a na sana na sana na	
		·.
	·	·
- 88 		
	SCREEN ANALYSIS: Leach Tailing	
	Mesh Micron Wt % Au oz/t Ag oz/t	
	6 inch 152mm 24.5 .043	
	5 inch 125mm 19.0 :023	
	4 inch 100mm 26.3 .021	
	3 inch 75mm 26.2 .012	
	2 inch 50mm 4.0 .008	
	100.0 (.024) cald assay	
4	PREGNANT SOLUTION ANALYSIS: ppm	
1	Au Cu	•
	Day 2 .12 .24	
)	" 4 .20 .26 " 5 .22 .34 " 8 .22 .35	
M	OBSERVATIONS:	
	CONCLUSIONS:	
	 Cyanide and lime consumptions are reasonable. Extremely low recovery. 	
	Material is definitely particle size sensitive and	
	recoveries would benefit from crushing.	
	Essentially all leaching was complete after 48 hours	E .
	RECOMMENDATIONS:	
	Any further testing must include crushing prior to leaching.	
	(W-890039 / 1673 / 1674)	
	WESTCOAST MINERAL TESTING INC. 1128 W. 15th St., North Vancouver, B.C., Canada V7P 1M9 Bus. (604) 98	34-6493 or 986-MILL

CYANIDATION	I FGD-L-	1			880213	
CLIENT:	Gerle Gol	d	PROJECT:	Frisco /	Gold Dor	ne
SAMFLE:	C-1 (sam	ples 755	39 - 79553	;)		
OBJECTIVE:	Determine	• the pot	ential of	heap leach	ning.	
	-Preareat -Leach: 2	ion: nil 4 hr / 3 leach ta		; / 1 g/] N		
TEST CONDIT	IONS: Cya	nidation				
Tíne	Addition	- gm	NaCN g/1	Pt-	ł	
+ir .	NaCN				al Fin	al
L-0 -3 -24	.95	.2 .1 -	 .8	ତ୍. ଟ୍.ଟ୍ ଡ୍.୨		.3
REAGENT CON	ISUMPTION:	Cyanida	tion			
Reagent	çım	k	g/t			
			.73			
NaCN Ca (DH) 2	·.36 .3		. 6			
	.3					
Ca (OH) 2	.3	ATIONS:	. 6	Distribut	ion - %	
Ca(DH)2 METALLURGIC Froduct	.3	ATIONS:	.6 oz/t	Au	Ag	
Ca(DH)2 METALLURGIC	.3 CAL CALCUL 9m 985	ATIONS: Assay -	.6 oz/t	anara bite areas anas been porte been alle a		

5 L 1% L L	EN ANALYSIS	: Leach	Tailin	9					
Mesh	Micron		lt %		u oz/t		Ag 0	z/t	
9		31	.8		.035				
ter en la companya de la companya de La companya de la comp		29	- 1		.035				
100		7	.2		.031				
200		17	. 7		.031				
		14	- 2		.012				
		10	0.0	(.031)			alc Say
PREG!	ANT SOLUTI	ON ANAL	YSIS: p	ÞW					
I		Au				Fe	Zn		
Freg	sol'n	.36	600 - 610 -		.29	.72	adea a Bitter deser		
ÖBSEF	RVATIONS:								-
Pres March	Slime dif	ficult	to filt	er an	d wast	h, but	respo	nded	to SF
	Slime dif 214.	ficult	to filt	er an	d wasi	h, but	respo	nded	to SF
conci	Slime dif 214. JUSIONS:								
 CONCL	Slime dif 214.	lts, bu	t the t	ailin	g fra	ctiona			
 -	Slime dif 214. JUSIONS: Poor resu	ults, bu materia	t the t	ailin	g fra	ctiona			
 -	Slime dif 214. JUSIONS: Poor resu that the	ults, bu materi <i>e</i> :	t the t I is gr	ailin ind s	g fra	ctiona			
 RECOM	Slime dif 214. USIONS: Poor resu that the MENDATIONS	Materia S: P: conta	t the t 1 is gr .ct time	ailin ind s	g fra	ctiona			
 RECOM	Slime dif 214. USIONS: Poor resu that the MENDATIONS Try longe	Materia S: P: conta	t the t 1 is gr .ct time	ailin ind s	g fra	ctiona			
 RECOM	Slime dif 214. USIONS: Poor resu that the MENDATIONS Try longe	Materia S: P: conta	t the t 1 is gr .ct time	ailin ind s	g fra	ctiona			
 RECOM	Slime dif 214. USIONS: Poor resu that the MENDATIONS Try longe	Materia S: P: conta	t the t 1 is gr .ct time	ailin ind s	g fra	ctiona			
 RECOM	Slime dif 214. USIONS: Poor resu that the MENDATIONS Try longe	Materia S: P: conta	t the t 1 is gr .ct time	ailin ind s	g fra	ctiona			

			.109				
	ed	495.5	(.130)), O	<u> </u>
	eg sol'n ach tlg	1025	.040 .047		63	 3.8 5.2	
٣r	oduct		Au	Ag			<u> </u>
			Assay -	- oz/t	Dist	tribution	- %
ME	TALLURGIC	CAL CALCUL	ATIONS:				
	\СМ ((ОН) 2	,02 ,3		.04 .6			
	agent	gm	ł:	g/t			
RE	AGENT COM	SUMPTION:					
-	-3 -24	1.05	.1	1.0 1.0		10.0 9.9	*
	{r -0					Initial B.9	Final
	me			NaCN g/l			
ΤĽ	ST CONDIT	IONS: Cya					
			4 hr / 3 leach ta	3 % solids ailing and			
FR	OCEDURE:			/ O min /	67 %	4 solids	
DE	JECTIVE:	Determine	the pot	ential of	heap	leaching	
SA	HPLE:	C-2 (sam	ples 755	545- 79565	5)		
		Gerle Gol		PROJECT:	Frig	sco / Gol	d Dome
		IFGD-L-				890	213

	استهمان محمد منه محمد منه السمانية السالم التي المنه الريان المراجعة والسالية المراجع المراجع المراجع الريان ا الم
	SCREEN ANALYSIS: Leach Tailing
	Mesh Micron Wt % Au oz/t Ag oz/t
	40.3 .054
	3 27.8 .054
3	35 6.4 .054
	100 14.2 .033
	200 11.3 .021
	100.0 (.047) calc
	assay
	PREGNANT SOLUTION ANALYSIS: ppm
	Au Ag Cu Fe Zn
	Preg sol'n 1.37 12 .30
	OBSERVATIONS:
) ⁽	Slime difficult to filter and wash, but responded to SF 214.
	CONCLUSIONS:
	 Poor results, with not much prospect for improvement with fine grinding.
	RECOMMENDATIONS:
	Try longer contact time.
	(W-880004 / 1609 / 1610)
	WESTCOAST MINERAL TESTING INC. 1128 W. 15th St., North Vancouver, B.C., Canada V7P 1M9 Bus. (604) 984-6493 or 986-MILL

EYANIDATIONFGD-L-3 980213 CLIENT: Gerle Gold FROZECT: Frisco / Gold Dome SAMPLE: C-3 (samples 75977 - 79920) OEJECTIVE: Determine the potential of heap leaching. PROCEDURE: -Grind: 500 gm / 0 min / 67 % solids -Freareation: nil -Leach: 24 hr / 33 % solids / 1 g/l NaCN -Filter: leach tailing and wash. -Screen: yes TEST CONDITIONS: Cyanidation Time Addition - gm NaCN g/l pH Hr NaCN Ca (OH) 2 Initial Finel L-0 1.0 .2 8.9 -24 - - .65 9.7 -24 - - .65 9.7 -24 - - .65 9.7 REAGENT CONSUMPTION: Cyanidation Reagent gm kg/t NaCN .35 .72 .72 Ca (OH) 2 .3 .6 METALLURGICAL CALCULATIONS:	CYAI									
CLIENT; Gerle Gold FROJECT: Frisco / Gold Dome SAMPLE: C-3 (samples 75977 - 79900) OFJECTIVE: Determine the potential of heap leaching. PROCEDURE: -Grind: 500 gm / 0 min / 67 % solids -Prepareation: nil -Leach: 24 hr / 33 % solids / 1 g/l NaCN -Friter: leach tailing and wash. -Screen: yes TEST CONDITIONS: Cyanidation Time Addition - gm NaCN g/l pH Hr NaCN Ca(OH)2 Initial Final L-0 1.0 .2 - 8.9 -3 - .1 .7 9.9 -24 - - .65 9.7 REAGENT CONSUMPTION: Cyanidation Seagent gm kg/t NaCN .35 .72 .72 .72 Ca(OH)2 .3 .6 .6 .6 METALLURGICAL CALCULATIONS:								8801	213	
DEJECTIVE: Determine the potential of heap leaching. PROCEDURE: -Grind: 500 gm / 0 min / 67 % solids -Freereation: nil -Leach: 24 hr / 33 % solids / 1 g/l NaCN -filter: leach tailing and wash. -Screen: yes TEST CONDITIONS: Cyanidation Time Addition - gm NaCN g/l pH Hr NaCN Ca(OH)2 Initial Final L-0 1.0 .2 - 8.9 -31 .7 9.9 -2465 9.7 REAGENT CONSUMPTION: Cyanidation Reagent gm kg/t NaCN .35 .72 Ca(OH)2 .3 .6 METALLURGICAL CALCULATIONS: <u>Assay - oz/t</u> Distribution - % Product gm Au Ag Au Ag Preg sol'n 1007 .004 42.9 Leach tlg 487.9 .011 57.1 Feed 487.9 (.019) 100.0	C11						Frisco /	Gold	d Dome	
PROCEDURE: -Grind: 500 gm / 0 min / 67 % solids -Freereation: nil -Leach: 24 hr / 33 % solids / 1 g/l NaCN -Filter: leach tailing and wash. -Screen: yes TEST CONDITIONS: Cyanidation Time Addition - gm NaCN g/l pH Hr NaCN Ca(OH)2 Initial Final L-0 1.0 .2 - 8.9 -31 .7 9.9 -2465 9.7 REAGENT CONSUMPTION: Cyanidation Reagent gm kg/t NaCN .35 .72 Ca(OH)2 .3 .6 METALLURGICAL CALCULATIONS: $\frac{Assay - oz/t}{Preg sol'n 1007 .004} \frac{Au}{42.9}$ Leach tlg 487.9 .011 57.1 Fred 487.9 (.019) 100.0	SAM	LE:	C-3 (sam	ples 759	77 - 75	780)			
-Preaction: nil -Leach: 24 hr / 33 % solids / 1 g/l NaCN -Filter: leach tailing and wash. -Screen: yes TEST CONDITIONS: Cyanidation Time Addition - gn NaCN g/l pH Hr NaCN Ca(OH)2 Initial Final L-0 1.0 .2 - 8.9 -31 .7 9.9 -2465 9.7 . REAGENT CONSUMPTION: Cyanidation Reagent gm kg/t NaCN .35 .72 Ca(OH)2 .3 .6 METALLURGICAL CALCULATIONS: $\frac{Assay - oz/t}{Castan construction} = \frac{Au Ag}{Castan construction} = \frac{Au Ag}{Ca$	OEJI	ECTIVE:	Determine	the pot	ential (∋f h	eap leac	hing.		
TimeAddition - gmNaCN g/1pHHrNaCNCa(OH)2Initial FinalL-01.0.231.7-24cagentgmkg/tNaCN.35.72Ca(OH)2.3.6METALLURGICAL CALCULATIONS:ProductProductgmAuAgAuAgPreg solin 1007.00442.9Leach tlg487.9.01157.1Feed487.9(.019) 100.0	PRO	CEDURE:	-Preareat -Leach: 2 -Filter:	ion: nil 4 hr / 3 leach ta	33 % sol:	ids	/ 1 g/l			
HrNaCNCa(OH)2Initial FinalL=01.0.2-8.9-31.79.9-24659.7REAGENT CONSUMPTION: CyanidationReagentgmkg/tNaCN.35.72Ca(OH)2.3.6METALLURGICAL CALCULATIONS:ProductgmAuAgPreg sol'n 1007.00442.9Leach tlg487.9.01157.1Feed487.9(.019) 100.0	TES	T CONDI	TIONS: Cya	nidatior	1					
HrNaCNCa(OH)2Initial FinalL=01.0.2-8.9-31.79.9-24659.7REAGENT CONSUMPTION: CyanidationReagentgmkg/tNaCN.35.72Ca(OH)2.3.6METALLURGICAL CALCULATIONS:ProductgmAuAgPreg sol'n 1007.00442.9Leach tlg487.9.01157.1Feed487.9(.019) 100.0	Tim	<u> </u>	Addition	- an	NaCN g.	/1	P	H		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hr		NaCN	Ca(OH)2	2		Init	ial		
REAGENT CONSUMPTION: CyanidationReagentgmkg/tNaCN.35.72Ca(OH) 2.3.6METALLURGICAL CALCULATIONS:Assay - $oz/tDistribution - %ProductgmAuAgAuPreg sol'n 1007.004.42.9Leach tlg487.9.011.57.1Feed487.9(.019)) 100.0$	L-0 -3		1.0	.2		7 55	ج د ب ع ا	9 0		
NaCN .35 .72 Ca(OH)2 .3 .6 METALLURGICAL CALCULATIONS: Assay - oz/t Distribution - % Product gm Au Ag Preg solin 1007 .004 42.9 Leach tlg 487.9 .011 57.1 Feed 487.9 .019) 100.0	Rea	jent	дm	ŀ	.g∕t					
METALLURGICAL CALCULATIONS: Assay - oz/t Distribution - % Product gm Au Ag Preg sol'n 1007 .004 42.9 Leach tlg 487.9 .011 57.1					.72					
Product gm Au Ag Preg sol'n 1007 .004 42.9 Leach tlg 487.9 .011 Feed 487.9 .019) 100.0		ALLURGI	CAL CALCUL	ATIONS:						
Product gm Au Ag Preg solin 1007 .004 42.9 Leach tlg 487.9 .011 Feed 487.9 .019) 100.0				Assay -	- oz/t		Distribu	tion	%	
Leach tlg 487.9 .011 57.1 Feed 487.9 (.019) 100.0		duct	ğm							
	Fro									
	Pre:		4 mm - m	(.019		>	100.0			

	SCREET		St Lea	ch Tailir	10				
	Mesh	Micron		Wt %		Au oz/	't	Ag oz/t	
				53.3		.012			
	8 35			17,9		.016			
	фо 100			4.9		.012			
	200			12.3		.010			
	an vi vi			11.6		.003			
				100.0	(.011		calc assay	
	PREGNA	ANT SOLUT		ALYSIS: p		_	_	_	
			Au 				Fe	Zn	
	Preg s	ATIONS:	.14			21	5.1	ب	
)	ر از وسیع ایت است است. ا	والمعاد المعاملة المتلاح							
		Slime di	fficul	t t n Æilt	er a	nd was	h hut	responded to SE	
	<u> </u>	Slime di 214.	fficul	t to filt	er a	nd was	h, but	responded to SF	
	CONCLU	214. JSIONS:							
	CONCLU	214. JSIONS: Poor res	ults,		aili	ng fra	ctiona:	responded to SF l analysis indica	tes
	CONCLU	214. JSIONS: Poor res	ults, mater	but the t	aili	ng fra	ctiona:		tes
	CONCLU	214. JSIONS: Poor res that the 1ENDATION:	ults, mater S:	but the t	aili ind :	ng fra	ctiona:		tes
	CONCLU Recomm	214. JSIONS: Poor res that the 1ENDATION:	ults, mater S: er con	but the t ial is gr tact time	aili ind :	ng fra	ctiona:		tes
	CONCLU Recomm	214. JSIONS: Poor res that the 1ENDATION: Try long	ults, mater S: er con	but the t ial is gr tact time	aili ind :	ng fra	ctiona:		tes
	CONCLU Recomm	214. JSIONS: Poor res that the 1ENDATION: Try long	ults, mater S: er con	but the t ial is gr tact time	aili ind :	ng fra	ctiona:		tes
	CONCLU Recomm	214. JSIONS: Poor res that the 1ENDATION: Try long	ults, mater S: er con	but the t ial is gr tact time	aili ind :	ng fra	ctiona:		tes
	CONCLU Recomm	214. JSIONS: Poor res that the 1ENDATION: Try long	ults, mater S: er con	but the t ial is gr tact time	aili ind :	ng fra	ctiona:		tes
	CONCLU Recomm	214. JSIONS: Poor res that the 1ENDATION: Try long	ults, mater S: er con	but the t ial is gr tact time	aili ind :	ng fra	ctional ive.		tes

CYANIDATIO	VFGD-L-	-4				8802	22	
CLIENT:	Gerle Gol	l d	FRD	JECT:	Frisco /	Gold	Dome	
BAMPLE:	C-2							
OBJECTIVE:	Determine	e the ef	fect o	f <u>o</u> ri	nding on (cyani	dation	ъ
PROCEDURE:	-Preareat	tion: ni 24 hr / 1 leach ta	1 33 % s	olide	/ 1 g/1			
TEST CONDI	TIONS: Cya	anidatio	Fi -					
	Addition		NaCN	g∕l	p	H		
l-[:"	NaCN	Са (ОН):	2		Init	ial	 Final	
L-0 -2.5 -17.5 -24.5	1.0 .5 .1	.2 .1 _1		-45 .95 .95	9.: 9.:	8		
REAGENT CO	NSUMPTION	: Evenid	ation					
Reagent								
New Stills also, dans and, then and, then	.58 .4		1.2 .8					
METALLURGI	CAL CALCU	LATIONS:						
		0			Distantic	L	# <i>;</i>	
Product		Assay -			Distribu			
Preg sol'n	GM 	Au 	Ag		Au 90.0	Ag 		
Leach tlg	498.8	.031			10.0			
Feed	478.8	(.120 .109		>	100.0			

<u>.</u>	Tailing t % .3	Au oz/t	Ag oz/t
<u>.</u>	_ *** _	tutz - tutz -	Ag oz/t
ć			
23		.023	
	.4	.017	
12	. ç	.015	
11	. 9	, 008	
12	. 6	.010	
32	. 9	.012	
10	0.0	(.012)	calc
	VOTO, nom		assay
	• •	Du Eo	Zn
	···· · · · · · · · · · · · · · · · · ·	hant hal : ban Menn Menn Hitte Mitte	An J L
	to filter	and wash. but	responded to SF
т в		-	
INS:			
nd results.			
	umption, a	at 1.2 kg/t, wi	ll require
ATIONS:			
			quired on a perhap
) / 1636 / 163	7)		
	32 10 SOLUTION ANAL Au n 1.06 ONS: me difficult ONS: od results. e cyanide cons restigation. ATIONS: nothing for n re representat	SOLUTION ANALYSIS: ppm <u>Au</u> <u>Ag</u> n 1.06 ONS: me difficult to filter WS: od results. e cyanide consumption, a estigation. MATIONS: nothing for now. Future	32.9 .012 100.0 (.012) SOLUTION ANALYSIS: ppm Au Ag Cu Au Ag Cu n 1.06 ONS:

CYANIDATIO	NFGD-L-	Ren Ver		1	B80224	
	Gerle Gol		FROJECT:	Frisco / (Gold Dome	
SAMPLE:	C-i (san	ples 755	39 - 79553	>		
OLJECTIVE:	Determine bottle ro		ential of	heap leach	ing with a d	6 day
PROCEDURE;			/ 0 min /	67 % soli	c/s	
		⊳ day / 3 leach ta	3 % solids aling and		eCN	
TEST CONDI	TIONS: Cya	Anidation	1			
Time			NaCN g/1			
	NaCN	Ca (DH) 2			al Final	
L-0 -3	1.0	. 5	.85	8.9 10.2		
-24 -49	.2	. 1 . 2		7.8 7.8		
-72	. 2	. 1	.8	9.9	10.1	
-97 -122	تي . 	·	.7 1.0	10.1 10.0		
-143	-		.95	10.0		
REAGENT CO	NSUMPTION:	Cyanida	ation			
Reagent	ġ m.		:g∕t			
NECN	.76		1.6			
Ca (OH) 2	.9		1.8			
METALLURGI	CAL CALCUI	ATIONS:				
			· oz/t	Distribut	ion - %	
Froduct	ā u	Au	Ag	Au	Ag	
Preg sol'n Leach tlg		.013 .027		52.4 47.6		
The second	475.9	(.057	······································	100.0		

	SCREEN	ANALYSIS	: Leact	a Tailin	3				
	Mesh	Micron		It %	Au oz/	t.			
		یند این روی بین این این این این این این این این این ا		5.7	.029				
	65	212		2.1	.008				
	100	150	a	2.0	.006				
	200	75	22	2.2	.023				
			10	0.0	(.027)		calc	
	22.2 %	- 200 me	sh						
	PREGNA	NT SOLUTI	ON ANAL	YSIS: p	om .				
			Au	Ag	Eu	Fe	Z n		
		48 hr · 72	.43 .46						
	-	· 97 · 122	.46 .44						
)		- 143	.32						
	OBSERV	ATIONS:							
	CONCLU	19 I ON 9 :							
•.*		Poor Au r							
		premature	Au pre	ecipitat	6 there w ion. The p	regnan	t solu	tion gr	
		72 (97) calculati		s, there	fore used	for the	a meta	llurgic	al
	wagan Admin	The incre	ased Au	u_recove	ry in this	test	compar	ed to P	GD-L-1,
		from 41.4 encourage			s notewort leaching.	ny, bu	t stil	1 otter	E NO
	DECOMP	ENDATIONS							
	necum		u.						
)023 / 164	₹ / 1 <i>⊥1</i>	1.2)					
	107020	nv ⊶	.U / 143*	rr 7 /					

CYANIDATIO	NFGC-L-	1				880	213	
CLIENT:	Gerle Gol	d	PRO	JECT:	Frisco /	Go 1	d Crown	
SAMPLE:	C-1 (sam	ples 76	342 - 1	76369	>			
OBJECTIVE:	Determine	the po	tentia	1 of	heap leact	ning	4	
PROCEDURE:	-Preareat	ion: ni 4 hr / leach t	1 33 % ε	olids	/ 1 g/l !			
TEST CONDI	TIONS: Cya	nidatio	n					
Time	Addition	- gm	NaCN	g/1	pł		_ 	
Hr	NaCN 	Ca (OH)	2				Final	
L-0 -3 -24	1.0 - -	.2		- .90 .85	10.1	7	10.8	
REAGENT CO	NSUMPTION:	Cyanid	lation					
Reagent	G₩		kg∕t 					
NaCN Ca (OH) 2	.14 .2		.28 .4					
METALLURGI	CAL CALCUL	ATIONS:						
		Assay	- oz/t		Distribut	tion	- %	
Product	ច្បា	Au	Ag		Au	A	g	
Freg sol'n Leach tlg	1017 493.2	.022			21.8 78.2			
Feed	493.2	(.208)	100,0			

	on 1975 oc						y, e y ee e y ee ee ee				
	•										
<u>.</u>											
	··										
	,	SCREEN	ANALYSIS	: Leach	Tailing	ļ					
_		Mesh	Micron		%		Au oz/t		Ag oz/	t	
		9		59,			.214		<u></u>	4 WAL	
		55		17.	4		.128				
		100		Ξ.	2		.035				
		200		13.	ద		.070				
				4 .	4		.008				
				100	.0	¢	.163)		calc assay	
		PREGNA	NT SOLUTI	ON ANALY	SIS: pp) ff)					
				Au	Ag		Cu	Fe			
		Preg s	el'n			=	23	2.2			
	}	OBSERV	ATIONS:								
198 198)		Slime dif 214.	ficult t	o filte	sh at	nd wash	h, but	respond	ed to Si	-
		CONCLU	SIONS:								
			Poor resu that the							is indi:	cates
a		RECOMM	ENDATIONS								
			Repeat th	e test a	fter gr	i, nd:	ing.				
		(W-880	006 / 161	3 / 1614)						
a											
		WESTCOAST	MINERAL TESTI	NG INC. 1128 V	V. 15th St., N	lorth Vi	ancouver, B.	.C., Canada	V7P 1M9 Bus	s. (604) 984-64	93 or 986-MILL

÷ • · · · CYANIDATION --FGC-L-2 880213 CLIENT: Gerle Gold PROJECT: Prisco / Gold Crown SAMPLE: C-2 (samples 76501 - 76502) OBJECTIVE: Determine the potential of heap leaching. PROCEDURE: -Grind: 500 gm / 0 min / 67 % solids -Preareation: nil -Leach: 24 hr / 33 % solids / 1 g/l NaCN -Filter: leach tailing and wash. -Screen: ves TEST CONDITIONS: Cyanidation Addition - gm NaCN g/l pH NaCN Ca(OH)2 Initial Final 1.05 .2 - 9.0 - .75 11.0 - .55 10.7 Time Pt ------Hr L-0 -3 -24) REAGENT CONSUMPTION: Cyanidation Reagent gm ------NaCN .49 Ca(OH)2 .2 kg∕t _____ ,98 ,4 METALLURGICAL CALCULATIONS: Assay - oz/t Distribution - % Product gm Au Ag Au Ag Preg sol'n 1022 .006 Leach tlg 500.0 .069 15.1 10.1 84.9 Feed 500.0 (.081) 100.0

•					
Ń.	SCREEN ANAL	YSIS: Leach Tai	ling		
1	Mesh Mid	eron Wt %	Au oz/t	Ag oz/t	
	8	62.1	.082		
		16.8	.058		
*	100	4,3	.078		
3	200	12.5	. 033		
		4.3	.010		
		100.0	(.067)	calc assay	
	PREGNANT SI	OLUTION AMALYSIS	: ppm	,	
200			ig Cu Fe		
¥.	Preg sol'n		 24 .56		
	OBSERVATIO	VS:		-	
	Slime 214.	e difficult to f	ilter and wash, bu	t responded to SF	
	CONCLUSION	Ba			
			e tailing fraction very grind sensit		
	RECOMMENDA	TIONS:			
	Repe	at the test afte	er grinding.		
	(W-880007 .	/ 1615 / 1616)			
	WESTCOAST MINERA	L TESTING INC. 1128 W. 151	h SI., North Vancouver, B.C., Cana	da V7P 1M9 Bus. (604) 984-6493 o	r 986-MILL

CYANIDATIO	NF6C-L-	Z			890213
CLIENT:	Gerle Gol	d	PROJECT:	Frisco /	Gold Crown
SAMPLE:	C-1 (sam	oles 763	42 - 76368)	
CEJECTIVE:	Determine	the pot	ential Au	recovery	after grindin
PP:OCEDURE:	-Preareat -Leach: 2	ion: nil 4 hr / 3 leach ta		/ i g/l :	
TEST CONDI	TIONS: Cya	nidation			
Time	Addition	- gm	NaCN g/l	þ	H
Hr	NaCN 	Ca (OH) 2		Init	ial Final
L-0 -2 -17	1.0	.2	- 1.0 .8	8. 10. 10.	 0 3 2 .
-24	kee.		. 8	1Ö,	2
REAGENT CO	NSUMPTION:	Cyanida	tion		
Reagent	gm	k	g∕t		
NaCN Ca(OH)2	, 10 , 2	_	.20 .4		
METALLURGI	CAL CALCUL	ATIONS:			
		Assay -	oz/t	Distribu	tion - %
Product	ġn.	Au	Ag	Au	Ag
Preg sol'n Leach tlg		.052 .038		75.6 24.4	
Feed	478.6	(.155)	100.0	

	SCREEN	ANALYSIS:	Leach	a Taílir	ġ					
	Mesh	Mitron		HE %		lu oz/		Ag oz/		
	65		27	.8		,078				
	100		2 4	. 3	,	.039				
	150		10	.2		.019				
	200		Ş	.3		.015				
				<u>,</u> Д		.012		<u></u>		
			10	0.0	¢	.038)		calc assay	
	PREGNA	ANT SOLUTIO								
			հս 	Ag 		Cu 	Fe 	Zn 		
	Preg s		1.78						-	
)	OBSER/	/ATIONS:								
	CONCLL	JSIDNS:								
		JSIDNS: Much impro %) but f								
		Much impro	iner gr rial re	inding sponds	would	impr	oved r	esults e	ven furt	her.
		Much impro %) but f This mate	iner gr -ial re F 90 %.	inding sponds	would	impr	oved r	esults e	ven furt	her.
		Much impro %) but f This mate recovey o	iner gr rial re F 90 %. :	inding sponds	would	impr	oved r	esults e	ven furt	her.
	RECOM!	Much impro %) but f This mate recovey o 4ENDATIONS Finer gri	iner gr -ial re F 90 %. : nding?	∙inding ∷sponds	would	impr	oved r	esults e	ven furt	her.
	RECOM!	Much impro %) but f This mate recovey o 4ENDATIONS	iner gr -ial re F 90 %. : nding?	∙inding ∷sponds	would	impr	oved r	esults e	ven furt	her.
	RECOM!	Much impro %) but f This mate recovey o 4ENDATIONS Finer gri	iner gr -ial re F 90 %. : nding?	∙inding ∷sponds	would	impr	oved r	esults e	ven furt	her.
	RECOM!	Much impro %) but f This mate recovey o 4ENDATIONS Finer gri	iner gr -ial re F 90 %. : nding?	∙inding ∷sponds	would	impr	oved r	esults e	ven furt	her.
	RECOM!	Much impro %) but f This mate recovey o 4ENDATIONS Finer gri	iner gr -ial re F 90 %. : nding?	∙inding ∷sponds	would	impr	oved r	esults e	ven furt	her.
	RECOM!	Much impro %) but f This mate recovey o 4ENDATIONS Finer gri	iner gr -ial re F 90 %. : nding?	∙inding ∷sponds	would	impr	oved r	esults e	ven furt	her.
	RECOM!	Much impro %) but f This mate recovey o 4ENDATIONS Finer gri	iner gr -ial re F 90 %. : nding?	∙inding ∷sponds	would	impr	oved r	esults e	ven furt	her.

1. 1. j. -CYANIDATION ---FGD-L-6 880315 CLIENT: Gerle PROJECT: Gold Dome SAMPLE: C-4 (75532 P) OBJECTIVE: Determine the potential of heap leaching using an 8 day bucket test on coarse rock. PROCEDURE: -Grind: nil -Approx. 6 kg. one used in bucket leach -Leach: 8 days/ 70 % solids /.5 g/l NaCN .-Filter: leach tailing and wash. -Screen: yes TEST CONDITIONS: Cyanidation Addition - gm Time NaCN g/l pН ------
 Day
 NaCN
 Ca(OH)2
 Initial
 Final

 -- 1.3
 .4
 8.6
 11.1

 -1
 .85
 .5
 .25
 10.1
 11.3

 -2
 1.5
 .45
 10.5
 11.5

 -3
 .4
 1.0
 .35
 11.2

 -4
 .5
 1.0
 .30
 10.3

 -5
 .75
 1.0
 .25
 10.4

 -7
 .5
 1.0
 .30
 10.5

 -8
 .50
 10.7
 Day L-0 -1 REAGENT CONSUMPTION: Cyanidation kg∕t Reagent C) m ____ _____ NaCN 3.06 .51 Ca(OH)2 6.4 1.1 METALLURGICAL CALCULATIONS: Distribution - % Assay - oz/t _____ Product gm Au Ag Au Ag ____ _ - - - - -- ---Preg sol'n 2390 .015 Leach tlg 5987 .036 14.3 85.7 > 100.0 Feed 5987 (.042 WESTCOAST MINERAL TESTING INC. 1128 W. 15th St., North Vancouver, B.C., Canada V7P 1M9 Bus. (604) 984-6493 or 986-MILL

•							
				•			
	SCREEN ANALYBIS:	Leach Tailin	ng				
	Mesh Micron	Wt %	Au oz/t	Ag oz/t			
	5 inch 125mm						
	4 inch 100mm	24.6	.014				
	2 inch 50mm	24.7	.039				
	1 inch 25mm	29.4	.047				
	3/8 inch 9.5mm	14.8	.041				
		6.5	.043				
		100.0	(.036)	calc assay			
	PREGNANT SOLUTION	ANALYSIS: p	mqc				
	-	Au Cu	_	· · ·			
		30 .64 50 .78					
}	" 5 .	58 .63 50 .97					
	OBSERVATIONS:						
	•						
	, HII SUIULL	ne were extr	remely clear dur	ing the test.			
	CONCLUSIONS:			. •			
	 It would appear that essentially all leaching took place during the first 48 hours. The total recovery of 14.3% was extremely low. The tailings fractional analysis suggests that this will not improve significantly with finer crushing. (See Recommendations). Cyanide and lime consumption were not high. 						
	RECOMMENDATIONS:						
	Test FGD-L- This should	7 indicates 9 be tried or	that fine crust n the C-4 sample	ning is beneficial.			
	(W-880037 / 1669	/ 1470)					

CYAD	IIDATION	FGD-L	7		890	315		
CLIE	ENT:	Gerle		PROJECT: F	Frisco Gold	Dome		
SAME	LE:	C-5 (755	540-44)					
OBJE			e the pote et test on		eap leaching :k.	using .	an 8	
PROS		-Bucket	pH 11.0-11 leach/ 70 leach tai	% solids /	15 g/l NaCh Ash.	4		
TESI	CONDIT	IONS: Cy	anidation					
Time			ion — gm	NaCN g/:	pł	ł 		
Day			Ca(OH)2		Initial	Final		
L-0 -1 -3 -4 -5 -7		1.3 .75 1.75 .5 .5 1.0 .75	.7 3.0 4.0 3.0 3.0 2.0	.25 .3	8.5 9.3 10.3 10.3 10.3 9.7 9.8	11.2 11.4 11.7		
-9 REAC	•	BUMPTION	- 4: Cyanidat	.25 ion		10.2		
Read	;ent	ជ្វ៣	kg	/t				
NaCM Ca (C		5.9 18.7		.0 .				
META	LLURGIC	AL CALCL	JLATIONS:					
			Assay -	oz/t I	Distribution	n – %		
Fro	luct	ឲ្យព	 Ац	• Ag	 Au <i>f</i>	 Ag		
-	, sol'n h tlg	 2528 5854	.020		28.9 71.1	- <u></u> .		•
Feed) }	5854	(.030		100.0			

t at mysterie w		د این در مورد استان میزوند. ۲- این در مورد استان میزوند ا	n na stant a stant a ta ta ta	ana ang ang ang ang ang ang ang ang ang	and and a second se					
* -										
 #	-				•					
	SCREEN	ANALYSIS:	Leach Tailin	ŋg						
	Mash 	Miéron	Wt %	Au 62/t	Ag oz/t					
	3 inch	75mm	17.8	.043						
	1 inch		48.1	.019		4				
	8 mesh		14.4	.016						
	20	850mic.	10.6	.010		:				
	45	212mic.	9.1	.008						
			100.0	(.021)	 calc assay					
	PREGNA	NT SOLUTION	ANALYSIS: F	m q c						
			Au Cu							
	Day 2 " 4		62 .44 82 .33	4						
	" 5 " 8	-	62 .0. 82 .41 68 .49	7	•					
	OBSERV	ATIONS:								
		Very clear	solutions du	uring test.						
	CONCLU	SIONS:	•							
2		Cyanide consumption was moderate but lime consumption was								
-		high.		· ·						
		Recovery at 33% is very low but high tailings values occur in the plus 1 inch material indicating that some crushing and/or grinding must occur in order to maximize recovery.								
		A slight dr unexplained		regnant solution	value for day 8 is					
	RECOMM	RECOMMENDATIONS:								
			est on this minus 3/4 :		ammended following					
	(N-880	038 / 1671	/ 1672)							
	WESTCOAST N	INERAL TESTING I	NC. 1128 W. 15th St.,	North Vancouver, B.C., Cana	da V7P 1M9 Bus. (604) 984-6493 or 986-MILL					

Appendix F – 2015 Metallurgical Testing

Gene E. McClelland <gene@mettest.com> Fri 5/8/2015 1:50 PM

· You:

trircon@cmaaccess.com

McCLELLAND LABORATORIES, INC.

1016 Greg Street, Sparks, Nevada 89431 (775) 356-1300 FAX (775) 356-8917 E-MAIL mi@mettest.com Hi Joe, I just got BT tail assays and calc'd Au recoveries. There is difficulty in evaluating results because head grade agreement is poor for this composite. Results show that 3/8" Au recovery was 49.9 %, and ¼" recovery was 63.0 %. Respective calculated head grades were 0.0639 and 0.0449 oz Au/ton ore. Reagent requirements were low. Au recovery would increase with a longer leach cycle indicating that CT recoveries would be markedly higher (as with the Moss). I'll send you tabulated data Monday.

Cheers, Gene

Gene E. McClelland Metallurgist/President

McClelland Laboratories, Inc. 1016 Greg Street Sparks, NV 89431 (775)356-1300 / fax (775) 356-8917

Gene@mettest.com www.mettest.com Mr. Joe Bardswich / **TRI-R Construction** MLI Job No. 3912-01 - May 11, 2015

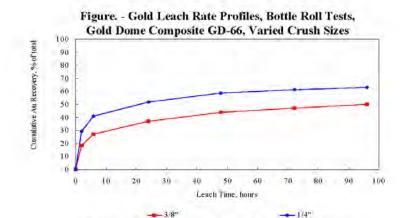
Table Head Assay Results and Head Grade Comparison,
Gold Dome, GD-66 Composite

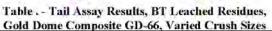
	e, GD-00 Composite				
Head Grade	Head Grade, oz/ton ore				
Determination Method	Au	Ag			
Direct Assay, 1	0.0359	0.047			
Direct Assay, 2	0.03211)	0.0351)			
Direct Assay, 3	0.0671	0.058			
Direct Assay, 4	0.0674	0.064			
Head Screen, P ₈₀ 3/4"	0.0580	0.055			
Calc'd. BT, P ₈₀ 3/8"	0.0639	0.057			
Calc'd. BT, P ₈₀ 1/4"	0.0449	0.048			
Average	0.0528	0.052			
Maximum Deviation from Average	0.0207	0.017			
Precision, percent	60.8	67.3			

1) Maximum deviation from average occurred with this head grade determination.

Table . - Head Screen Analysis Results, Gold Dome, GD-66 Composite, P_{\$0}3/4" Feed

				-		Distril	bution	
Size	Weight,	Cum. Wt.,	Assay,	oz/ton	/	Au		٩g
Fraction	percent	percent	Au	Ag	percent	Cum. pct.	percent	Cum. pct.
+3/4"	23.0	23.0	0.1047	0.096	41.5	41.5	40.4	40.4
-3/4"+1/2"	25.1	48.1	0.0595	0.058	25.8	67.3	26.7	67.1
-1/2"+1/4"	25.1	73.2	0.0350	0.038	15.1	82.4	17.4	84.5
-1/4+10M	16.1	89.3	0.0347	0.035	9.6	92.0	10.2	94.7
-10M+20M	2.8	92.1	0.0356	0.035	1.7	93.7	1.8	96.5
-20M+35M	1.7	93.8	0.0373	0.032	1.1	94.8	0.9	97.4
-35+65M	1.2	95.0	0.0327	0.029	0.7	95.5	0.6	98.0
-65+100M	0.5	95.5	0.0268	0.023	0.2	95.1	0.2	98.2
-100M	4.5	100.0	0.0548	0.023	4.3	100.0	1.8	100.0
Composite	100.0		0.0580	0.055	100.0		100.0	


McCLELLAND LABORATORIES, INC.


Mr. Joe Bardswich / TRI-R Construction MLI Job No. 3912-01 - May 11, 2015

	Composite	
No. 1 Barris Die	P ₁₀ Crus	
Metallurgical Results	3/8"	1/4"
Extraction: pet of total	Au	Au
in 2 hours	18.5	29.2
in 6 hours	27.2	41.0
in 24 hours	37.1	51.9
in 48 hours	43.8	58.6
in 72 hours	47.1	61.2
in 96 hours	49.9	63.0
Extracted, ozAu/ton ore	0.0319	0.0283
Tail Assay, ozAu/ton ¹⁾	0.0320	0.0166
Calculated Head, ozAu/ton ore	0.0639	0.0449
Average Head, ozAu/ton ore ²⁷	0.0528	0.0528
NaCN Consumed, Ib/ton ore	<0.05	<0.05
Lime Added, lb/ton ore	2.8	3.1
Final Leach pH	10.8	10.7
Natural pH (40% solids)	8.4	8.2
Final DO, ppm	4.1	4.0
Ag Extracted, ozAg/ton ore	0.014	0.013
Tail Assay, ozAg/ton ¹⁾	0.043	0.035
Calculated Head, ozAg/ton ore	0.057	0.048
Ag Recovery, percent	24.6	27.1

Table	Overall	Metallurgical	Results,	Bottle Roll Tests,	
Gold	Dome C	omposite GD-	-66, Varie	ed Crush Sizes	

Average of all head grade determinations.

	Tail Grade, oz/ton P., Crush Size					
Tail Assay	3/2		1/	4"		
	Au	Ag	Au	Ag		
1	0.0279	0.041	0.0162	0.035		
2	0.0344	0.044	0.0180	0.035		
3	0.0338	0.044	0.0155	0.035		
Average	0.0320	0.043	0.0166	0.035		

McCLELLAND LABORATORIES, INC.

Appendix G – 1987 Survey files

Tranine ?

CONTROL AND DETAIL SURVEY OF THE FRISCO MINE Prepared for GERLE GOLD LTD. 904-675 West Hastings St. Vancouver, B.C. V6B 1N2

Prepared by JACK M. KESLER,RLS,USMS P.O. BOX 665 KINGMAN, ARIZONA 86402 JOB NO. 577 MAY 28, 1987

> E904 JACK M. KKSLER

.

INTRODUCTION:

The scope of the entitled project covered an area of approximately one square mile namely Section 16, T.21 N., R.20 W., G.& S.R.M.. The intent of the survey was to control surface and underground mapping of limited extent.

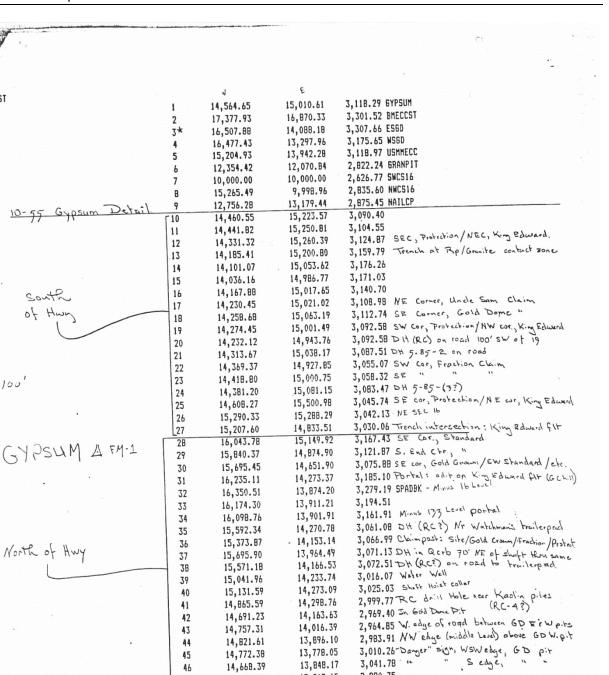
HORIZONTAL CONTROL:

The horizontal control network was designed by preanalysis to 3rd Order Class I standards of accuracy. This criteria was determined by utilizing the semi-major axis of the computed error ellipse at the 95% confidence interval. The origin was arbitrarily chosen as N=10000 and E=10000 at the SW Corner of said Section 16. The meridian was determined by direct solar observations in Latitude= 35DEG 13MIN 02SEC N., and Longitude= 114DEG 24MIN 21SEC W. All computations were performed at an average elevation of 3047 feet which represented the mean for the network.

VERTICAL CONTROL:

The vertical control network was based on trigonometric leveling. The BM for the project is USGS BM 46EAM located on the old highway 0.25 miles NE of the project. The elevation of 3303.00 feet as stamped on the aluminum disc was used for datum.

RESULTS:


The coordinates resulting from the survey follow. The number designations refer to notebooks kept by the client and its representative. A rigorous adjustment by least squares yielded a variance-covariance matrix indicating 3rd Order results. Sufficient redundancy existed to adjust the vertical by least squares providing an estimated uncertainty of a maximum of plus or minus 0.2 feet in the primary and secondary control stations. The primary network is comprised of points 1 through 7, secondary network of points 32,93,98 through 105 and 158 through 161. All other points have been determined by various means all sufficient to meet the needs imposed but NOT as control!

CONCLUSION:

The survey results as contained have been adjusted and checked using two separate computers and excluding field errors should be sufficient for exploration mapping. The primary and secondary networks contained sufficient mathematical checks so as to render the results shown sufficient for further expansion should need be. LIST

100

¥

<i>x</i>	42	14,691.23	14,165.65	2,707.40 50 500 500 11
	43	14,757.31	14,016.39	2,964.85 W. edge of road between GD Firw pits
	44	14,821.61	13,896.10	2,983.91 NW edge (middle Level) above GD W. p.t
	45	14,772.38	13,778.05	3,010.26 Danger" sign, WSW edge, GD pit
	46	14,668.39	13,848.17	3,041.78 " " Sedge, " "
	47	14,887.41	13,863.65	2,980.75
	4B	14,825.91	14,156.96	2,994.73 S. edge, timber - at Kaolin rock pile
	49	14,767.43	14,445.30	2,995,69 5. galepost of X
	Γ 50	14,574.46	14,549.83	2,981.65 SW end of deep trench W. of FM-1
	51	14,543.83	14,597.16	2,984.63 SW end of trench went to Gypsin 14.11
	52	14,650.68	14,716.10	2,989.74 NE end, same trench
South of Hwy	- 53	14,760.56	14,664.81	2,993.55 NE end of trench NE of FM-50
	54	14,749.39	. 14, 943. 19	3,039.22 5' Shalt on NNN Flack, Gypsum Hill
-1 70	L 55	14,802.13	14,993.45	3,017.54 At portal 50' NE of FM-54
56-70	/ 56	11,877.91	12,267.60	2,767.64 Stake, NE corner, granite leach pad
GRANITE DETAIL FM-6	57	11,771.41	12,158.84	2,757.36 SW corner, least pad
NV .	58	11,836.07	12,591.11	2.772.07 DH (Blue stake - RC?), W. bench, grand
				11.10

Page:	258
i uge.	200

		N	E	-
	59	11,787.12	12,596.78	2,767.38 DH (Blue stake - RC?) SSW of piter
GRANITE DETAIL	60	11,770.38	12,640.12	2,762.74 DH (") on bench, 80' E of FM-59
	61	11,735.58	12,567.81	2,766.39 " " , 100' C 210° Fra Fra - 59
	62	11,635.88	12,651.32	2,766.39 " , 100' C 210° From FM-59 2,771.06 DH (pr. Rc) - wy nice section hid o
	63	11,888.70	12,848.50	2,786.38 late at DH 300' F. of leach pad
	64	11,972.46	12,854.55	2,787.40 DH (boulder w/ hole in it)
Na	65	12,227.33	13,225.04	2,821.52 At head of trench, SW Bandera Arca
¥	66	12,549.94	13,214.67	LOTION DH between shatts W Bandson "
	67	12,741.08	12,983.23	2, 831.30 Bandera Area, 200 ft.W. of FM-9
	68	12,535.20	13,026.06	2,070.01 IN weave of "Dul Shalf"
	69	12,469.31	12,959.46	2,818.52 At foot of trench 100' SW of FM-L
	1 70	11,489.16	13,427.29	2,833.70 DH near HACKELF 800-900 ESE.
Detail from Mineral	71	16,429.91	13,704.60	3,346.72 Collar, inclined DH (155° e 63° = F10.2)
Monument. FM-5	72	16,370.47	13,634.03	3,216.01-25 level Portal. W. side, Bold Cisc
(priamerici ())	73	16,243.21	13,659.59	3,243.59 Portal SSE OF FM-72.
	74	16,288.48	13,478.30	3,172.17 - 128 Lavel Portal
¥	. 75	16,130.00	13,486.14	3, 133.44 Mill Foundation, Upper level, E. corner.
	76	16,146.50	13,416.47	3,121.54 11 Middle level, NW edge
	77	15,963.06	13,367.58	3,057.41 11 11, lower level, S. corner
	78	15,856.33	13,811.16	3,107.34 DH on road, S. zide, Gold Crown 1 3.067.57 Water Wall The Dide, Gold Crown 1
Detail from	79	17,050.34	12,691.23	The set you the swall and the
Gold Crown West & FM-4	80	18,133.66	13,074.26	3,117. JE HE COL, DIP CLAIM
· · · · · · · · · · · · · · · · · · ·	81	17,799.73	12,575.75	3, 104. 36 NW COL, DIP/NE COL, WATCHHAN
	82 83	16,623.57	13,675.21	3, 351.24 WNW edge, Kaolin Glory Hole
×	84	16,713.89	13,610.51	3,297.65 Dump Trastle, Zero Level Portal (Cilled
Ŧ	85	16,703.13 16,623.54		3, 399. 49 Between Kaslin Glory Hole' East Stope Fr
	86	16,475.71	13,317.78 13,606.66	3, 11 J. TO DIF/GOLD CROWU/WATCHMAN 120'N, FM.
2 1 2 1	87	17,104.86	13,714.98	3,301.52 <u>A 30 Ft</u> W. of Zero West Portal 3,232.03
Detail from A1-4	88	16,957.15	13,815.27	7 814 44
	89	17,004.02	14,117.64	Benting to HED Tank (TDC), No Elev
Stations around N side	90	17,123.71	14,065.27	3,240.73
of Gold Crown 14:11	91	17,479.75	14,203.95	3,220.83
	92	17,634.84	13,546.14	3,174.11
to close with FM-3	93-	16,597.48	14,013.78	3,307.58 CP FM-3 10 293- Break Knowsh"
	94	16,711.19	13,929.25	3, 348.14 A East, outside E. Stope portal.
	95	17,290.30	14,314.15	3, 211, 80
	96	16,615.97	13,883.76	3,315.29 A in bottom, E. Stope.
	97	16,668.38	13,847.25	3,344.08 A Plus 2 Level.
	98	16,588.28	13,988.96	3,300.66 NAILPI A inside breakthrough
	<mark>99</mark>	16,534.00	13,926.18	3,306.39 SPADBK & over raise from -16 houd
	100	16,398.62	13,847.09	3,286.37 SPADEK 1-1 (PM 32) to 1-2
	101	16,451.47	13,857.03	3,286.13 SPADBK 1-2 13 1-3
Detail through	102	16,480.25	13,857.00	3,285.98 SPADBK \-1
Minus 16 Level	103	16,520.10	13,883.55	3,285.19 SPADBK 1-5
	104	16,526.48	13,898.72	3,284.49 SPADBK 1-6
	105	16,521.35	13,927.06	3,284.55 SPADBK 1-7 (Sat of raise to Zero Level)
Detail, East Stope	106	16,668.65	13,896.36	3,336.34 7 P-1 .
	107	16,670.03	13,888.24	3,333.80
	108	16,665.66	13,867.65	3, 336.51
	109	16,656.70	13,855.98	3, 329.19
	110	16,653.92	13,851.73	3,325.15
	111	16,630.57	13,831.57	3,320.78 TP-2
	112	16,632.83	13,805.67	3, 324. 34 Dat most, NW Drift
	113	16,629.84	13,847.91	3,304.80
	114	16,632.80	13,919.64	3, 324.95
	115	16,605.22	13,914.29	3,321.77
	116	16,590.18	13,920.37	3, 321.63
	117	16,594.23	13,907.53	3, 322.74 TP-3

Page:	259

119	16 606 06	17 004 70	7 701 00
			3,321.22
			3,315.76
			3, 320.01
			3,321.30
			3,319.10
			3,318.74
			3,318.11
			3, 319. 45
			3,320.73
			3,320.53
			3, 333.83
			3,338.53
			3,346.58
			3,335.22
			3, 359. 10
the second se	the same taken the same of the same same same same same same same sam	and the second descent of the second s	3, 349. 37
			3,303.76 From FM- 84 to Portal
			3,297.88 Portal to A1
	N .		3,307.23 4
			3,310.80
			3,296.64
			3,302.87
			3,308.76
			3,307.57
			3, 313. 61
			3,322.03
			3,305.74
	the second second second second	13,657.55	3,303.82
	•	13,674.87	3,309.84
		13,674.43	3,306.60
		13,667.52	3,302.91
	16,490.84	13,673.46	3,301.56
		13,660.66	3,300.51
		13,671.56	3,289.66
		13,643.33	3,297.35
		13,638.26	3,304.64
		13,950.00	3,124.B0 USMM
	15,242.39	13,940.21	3,124.30 BR1
	15,210.18	13,919.82	3,113.64 BR2
	16,861.36	13,490.46	3,226.28 A4
	16,947.51	13,812.59	3,262.63 A3
160	16,869.86	13,993.48	3,284.66 A2
161 162	16,720.89	14,063.15	3,303.17 A1
	119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160	120 16, 595.15 121 16, 574.77 122 16, 567.61 123 16, 567.61 123 16, 553.13 125 16, 543.53 126 16, 546.53 127 16, 566.78 128 16, 572.63 129 16, 651.06 130 16, 660.41 131 16, 670.60 132 16, 588.52 133 16, 682.29 135 16, 476.67 136 16, 496.18 137 16, 483.83 140 16, 497.18 139 16, 483.83 140 16, 508.59 142 16, 504.33 140 16, 499.18 137 16, 483.83 140 16, 499.18 137 16, 481.31 143 16, 508.59 142 16, 508.59 142 16, 514.33 145 16, 514.33 146 16, 512.07	12016,595.1513,867.0512116,595.1513,867.0512116,574.7713,869.8212216,567.6113,896.1112316,561.9813,879.8712416,553.1313,877.2812516,543.5313,853.7812716,566.7813,861.0512816,572.6313,865.1012916,651.0613,801.4313016,660.4113,793.6513116,670.6013,780.0813216,688.5213,786.7613316,682.2913,766.9613416,682.2913,766.9613516,476.6713,631.4013816,499.1813,653.7413916,483.8313,638.9614016,494.8213,649.3614116,524.4913,645.4314316,521.0713,653.9914416,514.3313,653.9914516,514.3313,674.8714816,512.0713,674.8714916,512.4613,674.4314916,512.4613,674.4314916,512.4613,674.4715116,479.5913,663.9914616,512.4613,674.4314716,523.9713,667.5215016,490.8413,673.4615116,477.5913,667.5215016,479.5913,663.8215515,219.2113,638.2615515,219.2113,638.2615515,219.2113,6

-..

١.

Appendix H – 2015 Survey files

Sta_ID	AZSP_0203_Y_ft	AZSP_0203_X_ft	Elevation_ft	Elevation_m	Feature_ID
40	1532864.354	501769.2388	3049.98	929.633904	OPUS
50	1532864.354	501769.2388	3049.98	929.633904	BASE
51	1532990.72	497077.1338	2838.6211	865.2117113	GLO 1915
52	1532985.279	499721.5743	2915.3797	888.6077326	3-BCAP 12213
53	1532979.843	502365.8432	3045.2714	928.1987227	GLO BCAP 1915
54	1532917.758	501027.2875	3127.9256	953.3917229	X IN ROCK
55	1532743.382	500728.7726	2994.507	912.7257336	4X4 POST
56	1532571.009	500467.0125	2951.5837	899.6427118	4X4 POST
57	1532329.438	500342.1071	2917.7255	889.3227324	4X4 POST
58	1533995.811	499902.8234	3034.7858	925.0027118	4X4 POST
59	1533734.23	502232.6194	3170.4912	966.3657178	4X4 POST
					SET NAIL IN
60	1532152.572	501455.1805	2991.4164	911.7837187	ROCKS
61	1531759.845	501000.3676	2946.1342	897.9817042	4X4 POST
					GLO BCAP LEANS
62	1530340.364	502345.4451	2936.61	895.078728	Ν
63	1530257.632	502167.8198	2918.129	889.4457192	4X4 POST
64	1530623.465	501980.2629	2916.4197	888.9247246	4X4 POST
65	1530918.091	503166.3318	2978.3783	907.8097058	4X4 POST
66	1530819.048	502206.9643	2944.9335	897.6157308	NAIL IN ROCK
67	1531611.227	501620.1805	3015.6651	919.1747225	4X4 POST
68	1531709.216	501768.0877	3058.4604	932.2187299	NAIL IN ROCKS
69	1531783.494	501881.4646	3095.1795	943.4107116	4X4 POST
70	1531877.628	501859.8716	3097.463	944.1067224	2.ALUM CAP
71	1530423.15	502418.1068	2932.8239	893.9247247	NAIL IN ROCKS
72	1532296.497	502573.805	3048.4111	929.1557033	4X4 POST
73	1533532.729	501956.4207	3124.9203	952.4757074	4X4 POST+-
74	1534656.17	500904.4482	3261.1277	993.991723	4x4 POST
75	1534160.935	500153.3382	3102.3285	945.5897268	4x4 POST
76	1535177.886	499169.3711	3038.7097	926.1987166	4x4 POST
77	1535342.485	499419.9835	3103.4177	945.921715	4x4 POST
78	1535507.457	499670.5275	3106.0785	946.7327268	4x4 POST
79	1535672.978	499921.027	3142.6959	957.8937103	4x4 POST
80	1535837.78	500171.4099	3181.7773	969.805721	4x4 POST
81	1534986.254	501405.3652	3215.0614	979.9507147	4x4 POST
82	1534490.81	500654.5722	3267.2825	995.867706	NAIL IN ROCKS
83	1533071.51	501231.1649	3069.8875	935.70171	4X4 POST
84	1532102.76	500613.0992	2950.3173	899.256713	4x4 POST
85	1531535.451	499382.5376	2860.8849	871.9977175	4x4 POST

Sta_ID	AZSP_0203_Y_ft	AZSP_0203_X_ft	Elevation_ft	Elevation_m	Feature_ID
86	1531408.173	499459.1087	2867.2071	873.9247241	SET 4.RB+YPC
87	1534325.873	500403.9552	0	0	CALC
88	1533402.871	501731.8922	0	0	CALC
89	1531946.848	501216.9343	0	0	CALC
90	1530678.994	502044.6267	0	0	CALC
91	1531695.185	501747.5239	0	0	CALC
92	1531862.364	498916.9326	0	0	CALC
93	1531898.728	500857.0174	0	0	CALC
200	1532738.556	501310.1788	3017.4105	919.7067204	WELL
201	1532490.102	500965.0735	2982.9617	909.2067262	MET-TEST
202	1532504.382	500988.1141	2976.1539	907.1317087	GD 89-24
203	1532569.011	500870.6237	2992.0102	911.964709	GD 89-26
204	1532550.561	500871.7915	2993.3685	912.3787188	dh
205	1532535.388	500821.599	2999.1887	914.1527158	dh
206	1532497.765	500803.996	3011.4951	917.9037065	HOLE A
207	1532476.851	500783.0772	3018.1454	919.9307179	HOLE B
208	1532404.94	500828.5938	3037.1776	925.7317325	DH
209	1532434.768	500843.6939	3023.8147	921.6587206	DH
210	1532407.244	500874.1868	3031.0653	923.8687034	HOLE A
211	1532346.175	500912.5705	3050.2386	929.7127253	DH
212	1532335.843	500863.6504	3054.3954	930.9797179	HOLE C
213	1532320.079	500809.8209	3057.1382	931.8157234	DH
214	1532360.382	500775.8298	3053.9689	930.8497207	GD 89-9
215	1532392.563	500778.6916	3045.4321	928.2477041	GD 89-10
216	1532581.677	500885.1659	2985.6552	910.027705	dh

Appendix I – Collar Info for Gold Dome, Granite Resource

Gold Dome Resource

ID	Easting_AZSP	Northing_AZSP	Elev_ft	Depth	Azimuth	Dip	Year_Drilled	Company
RC-2	501271.2	1532558	2994	90	0	-90	0	FLMC
RC-3	501374.2	1532563	2999.71	150	0	-90	0	FLMC
RC-4	501480.8	1532568	3000	130	0	-90	0	FLMC
F25	501001.3	1532453	3031	50	0	-90	1973	Red Dog
F26	501036.8	1532497	3029	100	0	-90	1973	Red Dog
F29	500870.6	1532449	3025	60	0	-90	1973	Red Dog
F30	500914.8	1532393	3038	60	0	-90	1973	Red Dog
F31	500958.3	1532422	3031	60	0	-90	1973	Red Dog
F32	500880.2	1532430	3028	25	0	-90	1973	Red Dog
F33	500882.9	1532502	3013	40	0	-90	1973	Red Dog
F34	500961.4	1532489	3026	70	0	-90	1973	Red Dog
F35	501019.6	1532415	3024	45	0	-90	1973	Red Dog
F51	500798.3	1532434	3025	30	0	-90	1982	Red Dog
F52	500784	1532479	3017	30	0	-90	1982	Red Dog
F53	500864.9	1532337	3053	30	0	-90	1982	Red Dog
F54	500854	1532385	3040	50	0	-90	1982	Red Dog
F55	500844.4	1532439	3024	50	0	-90	1982	Red Dog
F56	500833.3	1532489	3011	40	0	-90	1982	Red Dog
F57	500825.2	1532536	2998	40	0	-90	1982	Red Dog
F58	500812.1	1532586	2995	30	0	-90	1982	Red Dog
F59	500914	1532347	3046	30	0	-90	1982	Red Dog
F60	500904.6	1532397	3037	40	0	-90	1982	Red Dog
F61	500892.8	1532446	3024	50	0	-90	1982	Red Dog
F63	500871.8	1532550	3000	70	0	-90	1982	Red Dog
F64	500863.1	1532596	3007	80	0	-90	1982	Red Dog
F66	500954.4	1532405	3033	40	0	-90	1982	Red Dog
F67	500943.8	1532456	3027	50	0	-90	1982	Red Dog
F68	500933.8	1532507	3021	70	0	-90	1982	Red Dog
F69	500924	1532554	3009	80	0	-90	1982	Red Dog
F70	500918.3	1532609	3017	90	0	-90	1982	Red Dog
F72	501000.7	1532413	3027	45	0	-90	1982	Red Dog
F73	500997	1532465	3031	60	0	-90	1982	Red Dog
F74	501000.3	1532517	3037	80	0	-90	1982	Red Dog
F75	500968.4	1532567	3021	90	0	-90	1982	Red Dog
F76	500962.5	1532615	3023	100	0	-90	1982	Red Dog
F78	501040.6	1532425	3017	60	0	-90	1982	Red Dog
F79	501044.6	1532475	3031	100	0	-90	1982	Red Dog

Technical Report on the Frisco Gold Project Frisco Gold Corporation

ID	Easting_AZSP	Northing_AZSP	Elev_ft	Depth	Azimuth	Dip	Year_Drilled	Company
F80	501031.6	1532524	3044	120	0	-90	1982	Red Dog
F83	501044.6	1532472	3018	90	0	-90	1982	Red Dog
85-10	501101	1532520	2988	100	0	-90	1985	FLMC
85-11	500908.2	1532659	2991	120	0	-90	1985	FLMC
85-12	500848.3	1532680	2998	110	0	-90	1985	FLMC
85-13	500785.4	1532710	2992	100	0	-90	1985	FLMC
85-14	501013.7	1532474	3005	120	0	-90	1985	FLMC
85-15C	501146.3	1532419	2991	90	0	-90	1985	FLMC
85-18	501069.6	1532466	2997	0	0	-90	1985	FLMC
85-9	501110.5	1532453	2986	75	0	-90	1985	FLMC
FR87-4	501014.5	1532820	3066.4	368	0	-90	1987	Gerle Gold JV
FR87-5	501242.5	1532523	2992.5	268	0	-90	1987	Gerle Gold JV
GD87-1	501270.3	1532660	3008.5	200	0	-90	1987	Gerle Gold JV
GD87-2	501371.8	1532668	3008.7	200	0	-90	1987	Gerle Gold JV
GD87-3	501370.9	1532775	3018.4	260	0	-90	1987	Gerle Gold JV
GD87-4	501368.3	1532888	3025.1	140	0	-90	1987	Gerle Gold JV
GD87-5	501381.1	1532562	2999.8	140	0	-90	1987	Gerle Gold JV
GD87-6	500878.6	1532605	2986.4	140	0	-90	1987	Gerle Gold JV
GD87-7	500796.2	1532661	2984.1	100	0	-90	1987	Gerle Gold JV
GD88-1	501271.9	1532513	2991.8	100	0	-90	1988	Gerle Gold JV
GD88-10	501523.5	1532415	2993.9	80	0	-90	1988	Gerle Gold JV
GD88-11	501479.3	1532613	3004.8	180	0	-90	1988	Gerle Gold JV
GD88-12	501673.8	1532354	2979.2	175	0	-90	1988	Gerle Gold JV
GD88-13	501374.3	1532468	2992.3	120	0	-90	1988	Gerle Gold JV
GD88-14	501424.1	1532462	2992.5	100	0	-90	1988	Gerle Gold JV
GD88-15	501460.9	1532466	2993.1	70	0	-90	1988	Gerle Gold JV
GD88-16	501887.9	1532255	3025.8	170	0	-90	1988	Gerle Gold JV
GD88-18	501529.1	1532462	2995.4	110	0	-90	1988	Gerle Gold JV
GD88-19	501627.9	1532469	3001.5	120	0	-90	1988	Gerle Gold JV
GD88-2	501321.2	1532511	2992.6	100	0	-90	1988	Gerle Gold JV
GD88-20	501573.7	1532468	3000.1	120	0	-90	1988	Gerle Gold JV
GD88-21	501772.8	1532510	2999.8	160	0	-90	1988	Gerle Gold JV
GD88-22	501872	1532513	3003.9	180	0	-90	1988	Gerle Gold JV
GD88-23	501681.6	1532616	3013.4	180	0	-90	1988	Gerle Gold JV
GD88-3	501371.6	1532512	2995.1	140	0	-90	1988	Gerle Gold JV
GD88-4	501420.2	1532515	2996.2	120	0	-90	1988	Gerle Gold JV
GD88-5	501472.5	1532514	2997.2	140	0	-90	1988	Gerle Gold JV
GD88-6	501521.7	1532515	2995.7	140	0	-90	1988	Gerle Gold JV
GD88-7	501625.3	1532516	3006	200	0	-90	1988	Gerle Gold JV
GD88-8	501698.1	1532517	3003	200	0	-90	1988	Gerle Gold JV

Technical Report on the Frisco Gold Project Frisco Gold Corporation

ID	Easting_AZSP	Northing_AZSP	Elev_ft	Depth	Azimuth	Dip	Year_Drilled	Company
GD88-9	501470.3	1532413	2989.9	75	0	-90	1988	Gerle Gold JV
GD89-1	501475.3	1532571	3003.021	175	0	-90	1989	Mohave Mining
GD89-10	500774.3	1532401	3041.446	65	0	-90	1989	Mohave Mining
GD89-11	500774.9	1532501	3008.896	95	0	-90	1989	Mohave Mining
GD89-12	500761.6	1532601	2983.23	95	0	-90	1989	Mohave Mining
GD89-13	501284.8	1532384	2966.14	70	0	-90	1989	Mohave Mining
GD89-14	501324.1	1532410	2966.441	82	0	-90	1989	Mohave Mining
GD89-15	501074.3	1532449	2965.041	105	0	-90	1989	Mohave Mining
GD89-16	501074.8	1532498	2971.667	95	0	-90	1989	Mohave Mining
GD89-17	501173.8	1532464	2950.195	45	0	-90	1989	Mohave Mining
GD89-18	501075	1532548	2989.058	95	0	-90	1989	Mohave Mining
GD89-19	501175.1	1532551	2995	125	0	-90	1989	Mohave Mining
GD89-2	501476	1532696	3013.808	180	0	-90	1989	Mohave Mining
GD89-20	501075.6	1532618	3023.98	175	0	-90	1989	Mohave Mining
GD89-21	501175.4	1532610	3023.586	195	0	-90	1989	Mohave Mining
GD89-22	500975.5	1532599	2985	115	0	-90	1989	Mohave Mining
GD89-23	500974.9	1532553	2985	85	0	-90	1989	Mohave Mining
GD89-24	500990.8	1532502	2974.059	135	0	-90	1989	Mohave Mining
GD89-25	501225.9	1532410	2970	55	0	-90	1989	Mohave Mining
GD89-26	500876	1532568	2985	100	0	-90	1989	Mohave Mining
GD89-27	500874.9	1532500	3005	55	0	-90	1989	Mohave Mining
GD89-28	500874.2	1532400	3032.439	55	0	-90	1989	Mohave Mining
GD89-29	501274.5	1532474	2990.943	75	0	-90	1989	Mohave Mining
GD89-3	501576	1532695	3016.641	200	0	-90	1989	Mohave Mining
GD89-30	501324.1	1532469	2990.458	85	0	-90	1989	Mohave Mining
GD89-31	501424.4	1532432	2990.736	45	0	-90	1989	Mohave Mining
GD89-32	501424.9	1532646	3009.448	185	0	-90	1989	Mohave Mining
GD89-33	501626.4	1532594	3009.072	185	0	-90	1989	Mohave Mining
GD89-34	501576	1532639	3005	205	0	-90	1989	Mohave Mining
GD89-35	501524.1	1532545	3000	175	0	-90	1989	Mohave Mining
GD89-36	501426.2	1532597	3004.945	165	0	-90	1989	Mohave Mining
GD89-37	500975.9	1532674	3027.453	125	0	-90	1989	Mohave Mining
GD89-4	501575.3	1532595	3004.988	280	0	-90	1989	Mohave Mining
GD89-5	501675.9	1532694	3020	155	0	-90	1989	Mohave Mining
GD89-6	501771.2	1532794	3031.087	165	0	-90	1989	Mohave Mining
GD89-7	501877.2	1532893	3030.843	200	0	-90	1989	Mohave Mining
GD89-8	0	0	3037.151	105	0	-90	1989	Mohave Mining
GD89-9	500773.7	1532348	3054.532	75	0	-90	1989	Mohave Mining

ID	Easting_AZSP	Northing_AZSP	Elev_LMG	Depth	Azimuth	Dip	Year_Drilled	Company
87-A	499508.2	1529644	2770.345	50	0	-90	1987	Gerle Gold
87-B	499554.2	1529555	2770	183	0	-90	1987	Gerle Gold
87-C	499599.5	1529465	2770	180	0	-90	1987	Gerle Gold
87-D	499645.5	1529374	2770	245	0	-90	1987	Gerle Gold
87-E	499692.2	1529286	2770	340	0	-90	1987	Gerle Gold
87-F	499684.9	1529731	2780	50	0	-90	1987	Gerle Gold
87-G	499731.6	1529641	2779.127	170	0	-90	1987	Gerle Gold
87-H	499778.3	1529554	2774.89	330	0	-90	1987	Gerle Gold
87-1	499825.7	1529464	2780	260	0	-90	1987	Gerle Gold
87-J	499871	1529375	2781.96	303	0	-90	1987	Gerle Gold
87-J1	499918.4	1529283	2780	503	0	-90	1987	Gerle Gold
87-К	499867.1	1529820	2790.659	50	0	-90	1987	Gerle Gold
87-L	499912.4	1529732	2790	180	0	-90	1987	Gerle Gold
87-M	499959.1	1529642	2790	180	0	-90	1987	Gerle Gold
87-N	500003.8	1529554	2790	150	0	-90	1987	Gerle Gold
87-0	500051.2	1529466	2790	300	0	-90	1987	Gerle Gold
87-P	500095.2	1529376	2791.339	350	0	-90	1987	Gerle Gold
87-Q	500139.8	1529286	2790	503	0	-90	1987	Gerle Gold
87-R	499288	1529639	2770	75	0	-90	1987	Gerle Gold
87-S	499343.9	1529533	2768.508	245	0	-90	1987	Gerle Gold
87-T	499379.4	1529462	2760	200	0	-90	1987	Gerle Gold
87-U	499426.1	1529373	2760	200	0	-90	1987	Gerle Gold
87-V	499470.8	1529285	2758.154	250	0	-90	1987	Gerle Gold
87-W	499514.1	1529195	2758.565	300	0	-90	1987	Gerle Gold
87-X	499561.4	1529104	2757.793	503	0	-90	1987	Gerle Gold
FR87-6	499701.1	1529391	2770	77	0	-90	1987	Gerle Gold
FR87-7	499643.7	1529476	2770	202	0	-90	1987	Gerle Gold
AAA	500048.6	1529911	2804.969	120	0	-90	1988	Gerle Gold
BBB	500091.3	1529827	2801.88	200	0	-90	1988	Gerle Gold
ССС	500138.6	1529734	2800	200	0	-90	1988	Gerle Gold
DDD	500182.6	1529643	2800	200	0	-90	1988	Gerle Gold
EEE	500228.6	1529556	2800	300	0	-90	1988	Gerle Gold
FFF	500273.3	1529466	2803.774	300	0	-90	1988	Gerle Gold